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OF PARAMETRIC GENERALIZED QUASIEQUILIBRIUM PROBLEMS 
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ABSTRACT 
In this paper we establish sufficient conditions for the solution sets of parametric 

generalized quasiequilibrium problems with the stability properties such as lower 
semicontinuity and Hausdorff lower semicontinuity. 

Keyword: parametric generalized quasiequilibrium problems, lower semicontinuity, 
Hausdorff lower semicontinuity. 

TÓM TẮT 
Tính chất nửa liên tục dưới của các tập nghiệm 

của các bài toán tựa cân bằng tổng quát phụ thuộc tham số 
Trong bài báo này, chúng tôi thiết lập điều kiện đủ cho các tập nghiệm của các bài 

toán  tựa cân bằng tổng quát phụ thuộc tham số có các tính chất ổn định như: tính nửa liên 
tục dưới và tính nửa liên tục dưới Hausdorff. 

Từ khóa: các bài toán tựa cân bằng tổng quát phụ thuộc tham số, tính nửa liên tục 
dưới, tính nửa liên tục dưới Hausdorff. 

 

1. Introduction and Preliminaries 
Let , , , ,X Y Λ Γ M  be a Hausdorff topological spaces, let Z  be a Hausdorff 

topological vector space,  and A X⊆ B Y⊆  be a nonempty sets. Let 1 : 2AK A×Λ→ , 

2 : 2AK A×Λ→ , ,  and : 2BT A A× ×Γ→ : BC A×Λ→ 2 : 2ZF A B A M× × × →  be 
multifunctions with C  is a proper solid convex cone values and closed. 

For the sake of simplicity, we adopt the following notations. Letters w, m and s 
are used for a weak, middle and strong, respectively, kinds of considered problems. For 
ubsets U  and V  under consideration we adopt the notations. 

( , ) w u v U V× means , ,u U v V∀ ∈ ∃ ∈

( , ) m u v U V× means , ,v V u U∃ ∈ ∀ ∈

( , ) s u v U V× means  , ,u U v V∀ ∈ ∀ ∈

       1( , )U Vρ means U V∩ ≠∅ , 

      2 ( , )U Vρ means  , U V⊆

( , )u v wU V× means  and similarly for  ,u U v V∃ ∈ ∀ ∈ ,m s , 
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     1( , )U Vρ   means  U V∩ =∅  and similarly for 2ρ . 

Let {w, m, s}α ∈ , { , , }w m sα ∈ , 1 2{ , }ρ ρ ρ∈  and 1 2{ , }ρ ρ ρ∈ . We consider the 
following parametric generalized quasiequilibrium problems. 

(QEP αρ ): Find 1( , )x K x λ∈  such that 2( , ) ( , ) ( , , )y t K x T x yα λ γ×  satisfying 

( ( , , , ); ( , )).F x t y C xρ µ λ  

We consider also the following problem (QEP *
αρ ) as an auxiliary problem to 

(QEP αρ ): 

(QEP *
αρ ): Find 1( , )x K x λ∈  such that   2( , ) ( , ) ( , , )y t K x T x yα λ γ×  satisfying 

( ( , , , );int ( , )).F x t y C xρ µ λ  

For each , , Mλ γ µ∈Λ ∈Γ ∈ , we let 1( ) : { | ( , )}E x A x K xλ λ= ∈ ∈  and let 
%, : 2AMαραρΣ Σ Λ×Γ× →  be a set-valued mapping such that ( , , )αρ λ γ µΣ  and 

% ( , , )αρ λ γ µΣ  are the solution sets of (QEP αρ ) and (QEP *
αρ ), respectively, i.e., 

2( , , ) { ( ) | ( , ) ( , ) ( , , ) : ( ( , , , ); ( , ))},x E y t K x T x y F x t y C xαρ λ γ µ λ α λ γ ρ µ λΣ = ∈ ×  

%
2( , , ) { ( ) | ( , ) ( , ) ( , , ) : ( ( , , , );int ( , ))}.x E y t K x T x y F x t y C xαρ λ γ µ λ α λ γ ρ µ λΣ = ∈ ×  

Clearly % ( , , ) ( , , )αρ αρλ γ µ λ γ µΣ ⊆ Σ . Throughout the paper we assume that 

( , , )αρ λ γ µΣ ≠ ∅ ≠∅ and  for each % ( , , )αρ λ γ µΣ ( , , )λ γ µ  in the neighborhood of 

0 0 0( , , ) Mλ γ µ ∈Λ×Γ× .  

By the definition, the following relations are clear: 
% % %s ms m w  and w .  ρ ρ ρρ ρ ρΣ ⊆ Σ ⊆ Σ ⊆ ΣΣ ⊆ Σ   

The parametric generalized quasiequilibrium problems is more general than many 
following problems. 

(a) If 1 2 2( , , ) { }, , , , , ,T x y x M A B X Y K K K 1γ ρ ρ ρ ρ= Λ = Γ = = = = = = =  and 
replace ( , )C x λ  by int ( , )C x λ− . Then, (QEP

2α ρ ) and (QEP
1α ρ ) becomes to (PGQVEP) 

and (PEQVEP), respectively, in Kimura-Yao [7]. 
(PGQVEP): Find ( , )x K x λ∈  such that 

( , , ) int ( , )),  for all ( , ).F x y C x y K xλ λ λ⊂ − ∈/  

and 
(PEQVEP): Find ( , )x K x λ∈  such that 

( , , ) ( int ( , )) ,  for all ( , ).F x y C x y K xλ λ λ∩ − =∅ ∈  
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2(b) If 1 2 1( , , ) { }, , , , , , ,T x y x A B X Y K clK K Kγ ρ ρ ρ ρ= Λ = Γ = = = = = =  and 
replace ( , )C x λ  by \ intZ C−  with C  be closed and Z⊆ int C ≠ ∅ . Then, (QEP

1αρ ) and 
(QEP

2αρ ) becomes to (QEP) and (SQEP), respectively, in Anh - Khanh [1]. 

(QEP): Find ( , )x clK x λ∈  such that 
( , , ) ( \ int ) ,  for all ( , ).F x y Z C y K xλ λ∩ − ≠ ∅ ∈  

and 
(SQEP): Find ( , )x K x λ∈  such that 

( , , ) \ int ,  for all ( , ).F x y Z C y K xλ λ⊆ − ∈  

(c) If 1 2( , , ) { }, , , , ,T x y x M A B X Y K K K 2γ ρ ρ= Λ = Γ = = = = = =  and replace 
( , )C x λ  by int ( , )C x λ− , replace  by F f  be a vector function. Then, (QEP

2α ρ ) 

becomes to (PVQEP) in Kimura-Yao [6]. 
(PQVEP): Find ( , )x K x λ∈  such that 

( , , ) int ( , )),  for all ( , ).f x y C x y K xλ λ λ∈− ∈/  

Note that generalized quasiequilibrium problems encompass many optimization-
related models like vector minimization, variation inequalities, Nash equilibrium, fixed 
point and coincidence-point problems, complementary problems, minimum 
inequalities, etc. Stability properties of solutions have been investigated even in models 
for vector quasiequilibrium problems [1, 2, 3, 6, 7, 8], variation problems [4, 5, 9, 10] 
and the references therein. 

In this paper we establish sufficient conditions for the solution sets αρΣ  to have 
the stability properties such as the lower semicontinuity and the Hausdorff lower 
semicontinuity with respect to parameter , ,λ γ µ  under relaxed assumptions about 
generalized convexity of the map . F

The structure of our paper is as follows. In the remaining part of this section, we 
recall definitions for later uses. Section 2 is devoted to the lower semicontinuity and the 
Hausdorff lower  semicontinuity of solution sets of problems (QEP αρ ). 

Now we recall some notions. Let X  and Z  be as above and : 2ZG X →  be a 
multifunction.  is said to be lower semicontinuous (lsc) at G 0x  if  for 
some open set U implies the existence of a neighborhood  of 

0( )G x U∩ ≠∅
Z⊆ N 0x  such that, for all 
. An equivalent formulation is that:  is lsc at , ( )x N G x U∈ ∩ ≠∅ G 0x  if 0x xα∀ → , 

.  is called upper semicontinuous (usc) at 0 0 0( ), ( ),z G x z G x z zα α α∀ ∈ ∃ ∈ → G 0x  if for 
each open set , there is a neighborhood  of 0( )U G x⊇ N 0x  such that .  is 
said to be Hausdorff upper semicontinuous (H-usc in short; Hausdorff lower 
semicontinuous, H-lsc, respectively) at 

( )U G N⊇ Q

0x  if for each neighborhood B  of the origin in 
Z , there exists a neighborhood  of N 0x  such that,  0( ) ( ) ,Q x Q x B x N⊆ + ∀ ∈
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( ).  is said to be continuous at 0( ) ( ) ,Q x Q x B x N⊆ + ∀ ∈ G 0x  if it is both lsc and usc at 

0x  and to be H-continuous at 0x  if it is both H-lsc and H-usc at 0x .  is called closed 
at 

G

0x  if for each net 0 0{( , )} graph : {( , ) ( )}, ( , ) ( , )x z G x z z G x x z x zα α α α⊆ = ∈ →∣ 0z,  must 
belong to . The closeness is closely related to the upper (and Hausdorff upper) 
semicontinuity. We say that G  satisfies a certain property in a subset  if G  
satisfies it at every points of 

0( )G x
A X⊆

A . If A X=  we omit ``in X " in the statement. 
Let A  and Z  be as above and : 2ZG A→  be a multifunction. 
(i)  If G  is usc at 0x  then G  is -usc at H 0x . Conversely if G  is -usc at H 0x  and 

if  compact, then G  usc at 0( )G x 0x ; 

(ii)  If G  is H-lsc at 0x  then G  is lsc. The converse is true if  is compact;   0( )G x

(iii)  If  has compact values, then G  is usc at G 0x  if and only if, for each net 
{ }x Aα ⊆  which converges to 0x   and for each net{ } ( )y G xα α⊆ , there are  and 
a subnet {

( )y G x∈
}yβ  of { }yα  such that  .y yβ →

Definition. (See [1], [11]) Let X  and Z  be as above. Suppose that A  is a nonempty 
convex set of X  and that  : 2ZG X →  be a multifunction.  

(i)  G  is said to be convex in A  if for each 1 2,x x A∈  and [0,1]t∈  

1 2 1( (1 ) ) ( ) (1 ) (G tx t x tG x t G x+ − ⊃ + − 2 )  

(ii)  G is said to be concave A  if for each 1 2,x x A∈  and [0,1]t∈    

1 2 1( (1 ) ) ( ) (1 ) (G tx t x tG x t G x+ − ⊂ + − 2 )  

2. Main results  
In this section, we discuss the lower semicontinuity and the Hausdorff lower 

semicontinuity of solution sets for parametric generalized quasiequilibrium problems 
(QEP αρ ). 

Definition 2.1  
 Let A  and Z  be as above and : 2ZC A→  with a proper solid convex cone values. 
Suppose : 2ZG A→ . We say that  is generalized C -concave in  if for each G A

1 2,x x A∈ , 1 1( ( ), ( ))G x C xρ  and 2( ( ), int ( ))G x C x2ρ  imply 

1 2 1 2( ( (1 ) ), int ( (1 ) )), for all (0,1).G tx t x C tx t x tρ + − + − ∈  

Theorem 2.2  
 Assume for problem (QEP αρ ) that 

(i)   is lsc at E 0λ ,  is usc and compact-valued in 2K 1 0( , ) { }K A λΛ ×  and 0(E λ )  is 
convex; 
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( , ) ( ( , ), ) { }K A K K A(ii) in 1 2 1 0γΛ × Λ Λ × T,  is usc and compact-valued if sα = , 
and lsc if wα =  (or mα = ); 

(iii) 1 2 1 0 0( ( , ) ( ( , ), ), ), ,t T K A K K A Mµ λ∀ ∈ Λ × Λ Λ Γ ∀ ∈ ∀ ∈Λ , 2 0(., )K λ  is concave 
in  and 1( , )K A Λ 0(., ,., )F t µ  is generalized 0(., )C λ -concave in 

; 1 2 1( , ) ( ( , ), )K A K K AΛ × Λ Λ

(iv) the set 1 1 2 1{( , , , , ) ( , ) ( ( , ), ( ( , ), ), )x t y K A T K A K K Aµ λ ∈ Λ × Λ Λ Λ Γ × 2 1( ( , ), )K K A Λ Λ ×  

0 0{ } { }: ( ( , , , ); ( , ))}F x t y C xµ λ ρ µ λ×  is closed. 

Then αρΣ  is lower semicontinuous at 0 0 0( , , )λ γ µ . 

Proof.  
 Since { , , }w m sα =  and 1 2{ , }ρ ρ ρ= , we have in fact six cases. However, the 
proof techniques are similar. We consider only the cases 2,sα ρ ρ= = . We prove that 
%

2sρΣ  is lower semicontinuous at 0 0 0( , , )λ γ µ . Suppose to the contrary that % 2sρΣ  is not lsc 
at 0 0 0( , , )λ γ µ , i.e., %

20 0 0 0( , , ) sx ρ λ γ µΣ 0 0 0( , , ) ( , ,n n n∃ ∈ , )λ γ µ λ γ µ∃ → %
2 ( , , ),sn n n nx ρ, λ γ µΣ∀ ∈  

0nx x→/ . Since  is lsc at E 0λ , there is a net ( )n nx E λ′ ∈ , 0nx x′ → . By the above 
contradiction assumption, there must be a subnet mx′  of nx′  such that, m∀ , 

%
2 ( , , ) sm m mx ρ mλ γ µ′ ∈ Σ/ , i.e., 2 ( , )m m my K x λ′∃ ∈ ( , , )m m m mt T x y γ′, ∃ ∈

.

 such that 

( , , , ) int ( , )m m m m m mF x t y C xµ λ′ ⊆/ ′  (2.1) 

As  is usc at 2K 0 0( , )x λ  and 2 0 0( , )K x λ  is compact, one has 0 2 0 0( , )y K x λ∈  such 
that  (taking a subnet if necessary). By the lower semicontinuity of T  at 0my → y

0 0 0( , , )x y γ , 

one has ( , , )m m mt T x y mγ∈  such that .  0mt t→

Since ( , , , , , )m m m m m mx t y λ γ µ′ →   0 0 0 0 0 0( , , , , , )x t y λ γ µ and by condition (iv) and (2.1) 
yields that  

0 0 0 0 0 0( , , , ) int ( , )F x t y C xµ λ⊆/ , 

which is impossible since %
20 0 0( , , )  sx ρ 0λ γ µ∈ Σ . Therefore,  % 2sρΣ  is lsc  at 0 0 0( , , )λ γ µ . 

Now we check that  
%

22 0 0 0 0 0 0 cl( , , ) ( ( , , )).ss ρρ λ γ µ λ γ µΣ ⊆ Σ  

Indeed, let 
21 0 0 0( , , )sx ρ λ γ µ∈Σ %

22 0 0 0, ) ( ,sx ρ, λ γ µ∈ Σ  and 1 2(1 ) , (0,1)x t x tx tα = − + ∈ . 
By the convexity of E , we have 0( )x Eα λ∈ . By the generalized 0(., )C λ -concavity of 

0(., , , )F t y µ , we have  

0 0( , , , ) int ( , ),F x t y C xα αµ λ⊆  
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and since 2 0(., )K λ  is concave, one implies that for each 2 ( , )y K xα α 0λ∈ , there exist 

1 2 1 0( , )y K x λ∈  and 2 2 2 0( , )y K x λ∈  such that 1 (1 )y ty t yα 2= + − . By the generalized 

0(., )C λ -concavity of 0(., ,., )F t µ , we have 

0 0( , , , ) int ( , ),F x t y C xα α αµ λ⊆  

i.e., %
2 0 0 0 ( , , )sx ρα λ γ µ∈ Σ . Hence %

22 0 0 0 0 0 0( , , ) ( ( , , ))ss cl ρρ λ γ µ λ γ µΣ ⊆ Σ . By the lower 

semicontinuity of % 2sρΣ  at 0 0 0( , , )λ γ µ , we have 
% %

2 22 20 0 0 0 0 0( , , ) ( ( , , )) liminf ( , , ) limi nf ( , , ),s ss n n n s n n ncl ρ ρρ ρλ γ µ λ γ µ λ γ µ λ γ µΣ ⊆ Σ ⊆ Σ ⊆ Σ  

i.e., 
2sρΣ  is lower semicontinuous at 0 0 0( , , )λ γ µ .          

The following example shows that the lower semicontinuity of  is essential. E
Example 2.3  
 Let 0, [0,1], 0, ( , ) [A B X Y Z M C x 0, )λ λ= = = = = Λ = Γ = = = = +∞  and let   

  2( , , , ) 2 , ( , , ) { }, ( , ) [0,1]F x t y T x y x K xλλ λ λ= = =

and  

1

[-1,1] if 0,
( , )

[-1- ,0] er .
K x

oth wise
λ

λ
λ

=⎧
= ⎨
⎩

 

We have , (0) [ 1,1]E = − ( ) [ 1,0], (0,1]E λ λ λ= − − ∀ ∈ .  Hence  is usc and the 
condition (ii), (iii) and (iv) of Theorem 2.2 is easily seen to be fulfilled. But 

2K

αρΣ  is not 
upper semicontinuous at 0 0λ = . The reason is that E  is not lower semicontinuous. In 
fact  and (0,0,0) [ 1,1]αρΣ = − ( , , ) [ 1,0], (0,1]αρ λ γ µ λ λΣ = − − ∀ ∈ .  

The following example shows that in this the special case, assumption (iv) of 
Theorem 2.2 may be satisfied even in cases, but both assumption (ii ) and (iii 1 ) of 
Theorem 2.1 in Anh-Khanh [1] are not fulfilled. 

1

Example 2.4 
 Let 0, , , , , , , , , ,A B X Y Z T M CλΛ Γ  as in Example 2.3, and let 1( , )K x λ =  

2 ( , ) [0,1]K x λ =  and 

1

[-4,0] if 0,
( , )

[-1- ,0] er .
K x

oth wise
λ

λ
λ

=⎧
= ⎨
⎩

 

We shows that the assumptions (i), (ii) and (iii) of Theorem 2.2 satisfied and 
( , , ) [0,1], [0,1]αρ λ γ µ λΣ = ∀ ∈ . But both assumption (ii 1 ) and (iii ) of Theorem 2.1 

in Anh-Khanh [1] are not fulfilled. 
1
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The following example shows that in this the special case, assumption of 
Theorem2.2 may be satisfied even in cases, but Theorem 2.1 and Theorem 2.3 in Anh-
Khanh [1] are not fulfilled. 
Example 2.5 
 Let 0, , , , , , , , ,A B X Y T M CλΛ Γ  as in Example 2.4, and let 1 2( , ) ( , )K x K xλ λ= =  

[0, ]
2
λ  and 

1

[0,1] if 0,
( , )

[2, 4] er .
K x

oth wise
λ

λ
=⎧

= ⎨
⎩

 

We shows that the assumptions (i), (ii) and (iii) of Theorem 2.2 satisfied and 

( , , ))αρ λ γ µΣ =  [0, ], [0,1]
2
λ λ∀ ∈ . Theorem 2.1 and Theorem 2.3 in Anh-Khanh [1] are 

not fulfilled. The reason is that  is neither usc nor lsc at F ( , ,0)x y . 

Remark 2.6 
 In special cases, as in Section 1 (a) and (c). Then, Theorem 2.2 reduces to 
Theorem 5.1 in Kimura-Yao [7, 6]. However, the proof of the theorem 5.1 is in a 
different way. Its assumption (i) - (v) of Theorem 5.1 coincides with (i) of Theorem 2.2 
and assumption (vi), (vii) coincides with (iii), (iv) of Theorem 2.2 Theorem 2.2 slightly 
improves Theorem 5.1 in Kimura-Yao [7, 6], since no convexity of the values of E  is 
imposed. 

The following example shows that the convexity and lower semicontinuity of  
is essential. 

K

Example 2.7 
 Let 0, , , , , , , ,A X Y Z C M λΛ Γ  as in Example 2.5 and let   

{ }
{ }1

1,0,1 if 0,
( , )

0,1 er .
K x

oth wise

λ
λ

− =⎧⎪= ⎨
⎪⎩

 

Then, we shows that  is usc and has compact-valued 2K 1( , ) { }K X A 0λ×  and assumption 
(ii), (iii) and (iv) of Theorem 2.2 are fulfilled. But ( , , ))αρ λ γ µΣ  is not lsc at (0 . 
The reason is that 

,0,0)
E  is not lsc at 0 0λ =  and (0)E  is also not convex. Indeed, let 

 and 1 21, 0 (0)x x E= − = ∈
1 (0,1)
2

t = ∈  but 1 2(1 ) (0)tx t x E+ − ∈/ . 

In fact,  and (0,0,0) { 1,0,1}αρΣ = − ( , , ) {0,1}, (0,1]αρ λ γ µ λΣ = ∀ ∈ . 

The following example shows that the concavity of 0(., ., )F t µ  is essential. 
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Example 2.8 
 Let 0, , , , , , , ,A X Y Z C M λΛ Γ  as in Example 2.6 and let 1 2( , ) ( , )K x K xλ λ=  

[ , 3]λ λ= +  and 2( , , , ) ( , , ) (1 )F x t y F x y x xµ λ= = − + λ . We show that 2 0(., )K λ  is 
concave and the assumptions (i), (ii), (iv) of Theorem 2.2. are satisfied. But αρΣ  is not 
lsc at . The reason is that the concavity of  is violated. Indeed, taking (0,0,0) F

1 20,x x= =  3 (0) [0,3]
2

E∈ = , then for all 2( ,0) [0,3]y K A∈ = , we 

have , but 1 2( , ,0) 0, ( , ,0) 3 / 4F x y F x y= = 1 2
1 1 3( , ,0) (0,
2 2 16

F x x y )+ = − ∈ +∞/ . 

Theorem 2.9 
 Impose the assumption of Theorem 2.2 and the following additional conditions: 

(v)  is lsc in 2K 1 0( , ) { }K A λΛ ×  and 0( )E λ  is compact; 

(vi) the set   1 1 2 1 2 1{( , , ) ( , ) ( ( , ), ( ( , ), ), ) ( ( , ), ) :x t y K A T K A K K A K K A∈ Λ × Λ Λ Λ Γ × Λ Λ

      0 0( ( , , , ); ( , ))}F x t y C xρ µ λ  is closed. 

Then αρΣ  is  Hausdorff lower semicontinuous at 0 0 0( , , )λ γ µ . 

Proof. 
 We consider only for the cases: 2,sα ρ ρ= = . We first prove that 

2 0 0 0( , , )sρ λ γ µΣ  
is closed. Indeed, we let 

2 0 0 0( , , )n sx ρ λ γ µ∈Σ  such that 0nx x→ .  If 
20 0 0( , , )sx ρ 0λ γ µ∈Σ/ , 

0 2 0 0 0 0 0 0( , ), ( , , )y K x t T x yλ γ∃ ∈ ∃ ∈  such that  

0 0 0 0 0 0( , , , ) ( , )F x t y C xµ λ⊆/ . (2.2) 

By the lower semicontinuity of 2 0(., )K λ  at 0x , one has 2 ( , )n ny K x 0λ∈  such that 
. Since 0ny → y

2 0 0 0( , , )n sx ρ λ γ µ∈Σ , 0( , , )n n nt T x y γ∀ ∈  such that 

0( , , , ) ( , )n n n nF x t y C x 0µ λ⊆ . (2.3) 

By the condition (vi), we see a contradiction between ( 2.2) and (2.3). Therefore, 
2 0 0 0( , , )sρ λ γ µΣ  is closed. 

On the other hand, since 
2 0 0 0 0( , , ) ( )s Eρ λ γ µ λΣ ⊆ is compact by 0( )E λ  compact. 

Since 
2sρΣ  is lower semicontinuous at 0 0 0( , , )λ γ µ  and 

2 0 0 0( , , )sρ λ γ µΣ  compact. Hence 

2sρΣ  is Hausdorff lower semicontinuous at 0 0 0( , , )λ γ µ . So we complete the proof.  

The following example shows that the assumed compactness in (v) is essential. 
Example 2.10 
 Let , and for 2

0, , [0,1], ( , ) ,X Y A B Z M C x λ λ+= = = = = Λ = = Γ = = = 0

1 }2
2 1 1 1( 1, ) , ( , ) ( , ) {( , )x x x K x K x x xλ λ λ= − ∈ = =  and ( , , , ) 1F x t y µ λ= + . We shows 
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that the assumptions of Theorem 2.8 are satisfied, but the compactness of 0( )E λ  is not 
satisfied. Direct computations give 2

1 2 2 1( , , ) {( , ) | }x x xαρ xλ γ µ λΣ = ∈ =  and then αρΣ  
is not Hausdorff lower semicontinuous at  (although (0,0,0) αρΣ  is lsc at (0,0,0)). 
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