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ABSTRACT

In this paper, we give some extensions from a quadratic Lie algebra to quadratic Lie
superalgebras and odd-quadratic Lie superalgebras. Moreover, we use the cohomology to
recover some results obtained by the method of double extension.
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TOM TAT
M@t s6 mé rgng tir dai sé Lie toan phuwong
Trong bai bao nay, chung tdi sé duwa ra mot $6 mé rong twr mot dai s6 Lie toan
phuong lén siéu dai so Lie toan phwong va siéu dai so Lie toan phuong lé. Bén canh do
chang t6i sir dung cong cu doi dong diéu dé chirng minh lai so ket qua thu duoc tir phuwong
ph&p mao rong kép.

Tir khéa: dai sb Lie toan phuong, siéu dai s6 Lie toan phuong, siéu dai s6 Lie toan
phuong &, mo rong, cau truc symplectic.

1. Introduction

Let g be a complex Lie algebra and g its dual space. Denote by ad and ad”
the adjoint and coadjoint representations of g, respectively. It is known that the

semidirect product g=g@®g’ of g and g by ad” is a Lie algebra with the bracket
given by:

[ X+ .Y +g]|=[X,Y]+ad (X)(g)-ad"(Y)(f), VX,Y eg, f.geqd.
More particularly, we have [X,Y]é:[X,Y]g, [X,f}é:—foad(X) and

[f,g}EJ =0 forall X,Yeg, f,geg . Remark that g is also a quadratic Lie algebra
with invariant symmetric bilinear form B defined by:
B(X+f,Y+g)=f(Y)+g(X), VX,Yeqg, f,geq.

In 1985, A. Medina and P. Revoy gave the notion of double extension to
completely characterize all quadratic Lie algebras [9]. This notion is regarded as a
generalization of the definition of semidirect product by the coadjoint representation.
Another generalization is called T*-extension given by M. Bordemann that is suffictent
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to describe solvable quadratic Lie algebras [4]. We will recall them and some basic
results in Section 2. Sections 3 and 4 are devoted to give an expansion of these two
notions for Lie superalgebras. In particular, we present a way to obtain a quadratic Lie
superalgebra since a Lie algebra and a symplectic vector space. It is regarded as a
rather special case of the notion of generalized double extension in [1]. In a slight
change of the notion of T*-extension, we give a manner of how to get an odd-quadratic
Lie superalgebra from a Lie algebra.

In the last section, we introduce an approach to quadratic Lie algebras by the
cohomology given in [9] and [10]. From this, we give an explanation of the structure of
double extension as well as it allows us to construct new quadratic Lie algebra
structures from a given quadratic Lie algebra.

2. Quadratic Lie algebras
Definintion 2.1. Let g be a Lie algebra. A bilinear form B:gxg— £ is called:

0) symmetric if B(X,Y)=B(Y,X) forall X,Y g,
(i) non-degenerate if B(X,Y)=0 forall Y g implies X =0,
(iii)  invariantif B([X,Y],Z)=B(X,[Y,Z])forall X,Y,Z eqg.

A Lie algebra g is called quadratic if there exists a bilinear form B on g such
that B is symmetric, non-degenerate and invariant.

Definition 2.2. Let (g,B) be a quadratic Lie algebra and D be a derivation of g. We
say D askew-symmetric derivation of g if it satisfies

B(D(X),Y)=-B(X,D(Y)), VXY €g.

Denote by Der (g,B) the vector space of skew-symmetric derivations of (g,B)
then Der (g,B) is a subalgebra of Der(g), the Lie algebra of derivations of g. The
notion of double extension is defined as follows (see also in [9]).

Definition 2.3. Let g be a Lie algebra, g be its dual space and (h,B) be a quadratic
Lie algebra. Let ¢:g— Der (h,B) be a Lie algebra endomorphism. Denote by
¢ :hxh— g the linear mapping defined by:

o(X,Y)Z =B(¢(2)(X),Y), VX,Y eh, Zeq.

Consider the vector space h= g®h@® g and define a product on h:

[X+F+fY+G+g] =[x,\(}g +[F,G | +ad (X)(g)-ad"(Y)(f)

+¢(X)(G) = ¢(Y) (F) + o(F,G)
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forall X,Yeg, f,geqg and F,Geh. Then h becomes a quadratic Lie algebra with
the bilinear form B given by:

B(X+F+f,Y+G+g)= f(Y)+g(X)+B(F,G)
for all X,Yeg, f,geg and F,Geh. The Lie algebra (Hg) is called the double
extension of (h,B)by g by means of ¢ .

Note that when h={0} then this definition is reduced to the notion of the

semidirect product of g and g by the coadjoint representation.

Proposition 2.4. ([8], 2.11, [9], Theorem I). Let g be an indecomposable quadratic Lie
algebra such that it is not simple nor one-dimensional. Then g is the double extension
of a quadratic Lie algebra by a simple or one-dimensional algebra.

Sometimes, we use a particular case of the notion of double extension, that is a
double extension by a skew-symmetric derivation. It is explicitly defined as follows.

Definition 2.5. Let (g,B) be a quadratic Lie algebra and C € Der (g,B). On the
vector space §= gL e®Ef we define the product:

(Y] =[x.Y], +BC(X),V)f, [ X]=C(X) and [f,é}:O

for all X,Y €g. Then g_; is a quadratic Lie algebra with invariant bilinear form B
defined by:

B(e,e) = B(f, f)=B(e,g) = B(f,g) =0, B(X,Y)=B(X,Y) and B(e, f) =1
for all X,Y eg. In this case, we call g_; the double extension of g by C or a one-

dimensional double extension, for short.

The one-dimensional double extensions are sufficient for studying solvable
quadratic Lie algebras by the following proposition (see [6] or [8]).

Proposition 2.6. Let (g,B) be a solvable quadratic Lie algebra of dimension n, n>2.
Assume g non-Abelian. Then g is a one-dimensional double extension of a solvable
quadratic Lie algebra of dimension n—2.

We give now another generalization given by M. Bordemann as follows.

Definition 2.7. Let g be a Lie algebraand 0:gxg— g be a 2-cocycle of g, that is a
skew-symmetric bilinear map satisfying:
0(X,Y)oad(Z2)+6([X,Y],Z)+cycle(X,Y,Z)=0

for all X,Y,Z e g. Define on the vector space TG*(g) '=g®g the following product:
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[ X+ .Y +g]|=[X,Y]+ad"(X)(g)—ad"(Y)(f)+0(X,Y)
forall X,Y eg, f,geg. Then T (g) becomes a Lie algebra and it is called the T*-
extension of g by means of 6. In addition, if @ satisfies the cyclic condition, i.e.
O(X,Y)Z=6(Y,Z)X for all X,Y,Zeg then T (g) is quadratic with the bilinear
form:

B(X+f,Y+g)=f(Y)+g(X), VX,Yeg, f,geg.

Note that in the case of @ = 0then this notion is exactly the semidirect product by
the coadjoint representation.

Proposition 2.8. [4]. Let (g,B) be an even-dimensional quadratic Lie algebra over £ .
If g is solvable then it is i-isomorphic to a T*-extension Te*(h) of h where h is the
quotient algebra of g by a totally isotropic ideal.

3. Quadratic Lie superalgebras
Definition 3.1. Let g=g, ©g. be a Lie superalgebra. If there is a non-degenerate

supersymmetric bilinear form B on g such that B is even and invariant then the pair
(g,B) is called a quadratic Lie superalgebra.

Note that if (g,B) is a quadratic Lie superalgebra then g, Is a quadratic Lie

algebra and g; is a symplectic vector space with the restriction of the bilinear form B
on each part.

Lemma 3.2. Let g be a Lie algebra and (h, Bh) a symplectic vector space with
symplectic form B, . Let y :g— End(h) be a Lie algebra endomorphism satisfying:

B, (v (X)(Y),Z)=-B,(Y,w(X)(Z)), VX €9, Y,Zeh.

Denote by ¢:h x h— g the bilinear map defined by:

(X,Y)Z =B, (w(Z)(X),Y), VX,Y eh, Zeg.

Then ¢ is symmetric, i.e. ¢(X,Y)=¢(Y,X) forall X,Y eh.

Proof. Forall X,Y €h, Z eg,

$(X,Y)Z =B, (w(Z)(X),Y)=-B,(X.,w(Z)(Y)) =B, (w(Z)(Y),X)=(Y,X)Z.

Then one has d(X,Y) =9¢(Y,X).
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Theorem 3.3. Keep notions as in the above lemma and define on the vector space
g=g® g @®h the following bracket:

[X+f+F,Y+g+G]§=[X,Y]g+ad*(X)(g)—ad*(Y)(f)
+y (X)(G) -y (Y)(F)+¢(F,G)
for all X,Yeg, f,geg and F,Geh. Then g becomes a quadratic Lie
superalgebra with g, =g@®g", g, =h and the bilinear form B defined by:

B(X + f +F,Y +g+G)=f(Y)+g(X)+B,(F,G)

forall X,Y eg, f,geg and F,Geh.

Proof. We check first that the bracket satisfies the super-antisymmetric property
[Y,X]==(-DY[Y,X], VX €g,,Y €9,. Indeed, if X+ f,Y +g egy then

[X+f,Y+g]=[X,Y] +ad"(X)(g)-ad (Y)(f)=-[Y+g, X +f].

If X+fegs,Yeg then [ X+1f,Y]=y(X)(Y)and [Y,X +f]=-y(X)(Y).

And if X eg,Yeg then [X,Y]=¢(X,Y)=¢(Y,X)=[X,Y]. Therefore, one
has[Y,X J=-(-1)”[Y,X], VX €g,.Y €g,.

Next, we check the Jacobi identity:

()" [ XY, 2]+ ()" Y. [Z2. X]]+(-0)" [ Zz,[X.Y]]=0
is right for all X eg,, Yeg, and Zeg,. Indeed, if X,Y,Zeg, then the Jacobi
identity is clear. Let X + f,Y +geg, and Z e g; then

[ X+ £.[Y+9.Z]]=[ X+ f.w()@)]=y (X)(w(V)@))=y (X)oy (Y)2),

[Y+0.[Z, X+ F]]=[Y +9, v (X)(@)] == (Y)(w(X)Z)) ==y (Y)ow (X)Z)
and

[Z,[X+£.Y+g]]=[Z,[X,Y]+ad"(X)(g)—ad"(Y)() ]| = ([X.Y])(Z).
Therefore, [ X + f,[Y +9,2]|+[Y +0,[Z, X+ f]|+[Z,[ X+ f,Y +g]]=0.
If X+ feg,andY,Zeg; then

[ X+ £,[Y,Z]]=[ X+ f,6(Y,2)]=ad"(X)(¢(Y,Z)) =—4(Y,Z) 0ad(X),
(Y. [Z, X+ £ ]]=[Y, v (X)@) ]=-4(Y W (X)(2))
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and —[ Z,[ X + .Y ]]==[Z,y (X)(Y)]==9(Z,w (X)(Y)).

To prove —¢(Y,Z)oad(X)—¢(Y,w(X)(Z))—-o(Z,w(X)(Y))=0, let Teg we
have:

—~4(Y,Z)0ad(X)(T) =—¢(Y, Z)([ X, T])= (y/([x T)(Y), z)

~p(Y .y (X)@)N(T) =By (v (T) (V)W (X)(Z)) = By (w(X) oy (T)(Y),Z) and

~¢(Z,y (X)Y))(T) = =B, (v (T) (@), (X)(Y)) =By (w X)(Y).w (T)(2))
=—B, (w (T)ow (X)(Y), Z).

Therefore —¢(Y,Z)o0ad(X)—a(Y,y (X)(Z2))—¢(Z,p(X)(Y)) =0 and then

[ X+ £ [Y, 2]+ Y [Z, X+ £ ]]-[Z[X+f.Y]]=

If X,Y,Z eﬁi then the Jacobi identity is obviously satisfied since

[X,[Y,Z]]=[X.4(Y,2)]=0.

In final, we shall check B invariant. This is a straightforward computation. It is
easy to see that B is symmetric on Oy X Uy, Skew-symmetric on g xg; and vanish on

éﬁxéi. Hence, we can conclude that Q IS a quadratic Lie superalgebra.

K¢

Now we combine Definition 2.7 and Theorem 3.3 to get a more general result as
follows.

Theorem 3.4. Let g be a Lie algebra and 6:9 x g— g  a 2-cocycle of g. Assume
(h Bh) a symplectic vector space with symplectic form B,. Let y:g— End(h) be a
Lie algebra endomorphism satisfying:

B, (v (X)(Y),Z)=-B,(Y,w(X)(Z)), VX eg,Y,Zeh

Denote by ¢:h x h— g the bilinear map defined by:

(X, Y)Z =B, (w(Z)(X),Y), VX,Y eh, Zeg

and define on the vector space g=g® g @®h the following bracket:
[X+f+FY +g+G]EJ =[X,Y]g+ad*(X)(g)—ad*(Y)(f)+0(X,Y)
+y (X)(G) -y (Y)(F)+¢(F,G)

10
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for all X,Yeg, f,geg and F,Geh. Then g becomes a quadratic Lie
superalgebra with g, =g@®g’, g =h.

As a consequence of Definition 2.7 and Theorem 3.4, we also have the following
corollary.

Corollary 3.5. If 9 is cyclic then g is a quadratic Lie superalgebra with the bilinear
form:
B(X+F+f,Y+G+g)=f(Y)+g(X)+B,(F,G)
forall X,Yeg, f,geg and F,Geh.
4.  Odd-quadratic Lie superalgebras
Definition 4.1. Let g=g, ©g. be a Lie superalgebra. If there is a non-degenerate

supersymmetric bilinear form B on g such that B is odd and invariant then the pair
(9,B) is called an odd-quadratic Lie superalgebra.

Let g be a Lie algebra and ¢:g x g" — g be a bilinear map. We define on the
vector space g=g®g" the following bracket:

[X+f.Y+g]=[X,Y]+ad (X)(g)—ad (Y)(f)+e(f,0)

forall X,Y eg, f,geg . We search some condition such that g becomes a Lie super
algebra with Ela =g and él =g . In this case, ¢ is obviously symmetric.

M [X[f.9]]=[X.e(f.9)] [ f.[9.X]]=¢(f,goad(X)) and
—[9,[X, f]]=¢(g, f 0ad(X)). Therefore, one must have
ad(X)(o(f.9))+o(f,goad(X))+e(g, f oad(X))=0.

() [f.[g,h]]="foad(e(g,h)), [h[f.g]]=hoad(e(f,g)) and

[9.[h, f]]=goad(e(h, )).

Then we hace the second condition:
f oad(¢(g,h))+goad(e(h, f))+hoad(e( f,g))=0.
For the bilinear form B s defined by:

B(X+f,Y+g)=f(Y)+g(X), YX.Yeq f,geq
one has:

11



Tap chi KHOA HOC BHSP TPHCM Sé 51 nim 2013

B([X+1.Y+g];Z+h)=h((X.Y]+e(f,0)+9([Z,X])- ([ZY])
and B(X + 1,[Y +9,Z+h] )= ([Y.Z]+p(g,m)+h([X,Y])-g([X,Z]). Hence

it must have h(o(f,g))=f (¢(g.h)).
Finally, we have the following result.

Theorem 4.2. Let g be a Lie algebra and ¢:g x g — g a symmetric bilinear map
satisfying two conditions:

(i) ad(X)(qo(f,g))+qo(f,goad(X))+qo(g,foad(X)):O,
(i) foad(p(g,h))+goad(e(h, f))+hoad(e(f,g))=0
forall X,Yeg, f,geg .
Then the vector space g=g@® g~ with the following bracket:
[X+f.Y+g]=[X,Y]+ad (X)(g)—ad (Y)(f)+e(f,0)
forall X,Y eg, f,geq isa Lie superalgebra and called the T -extension of g by

means of ¢. Moreover, if ¢ satisfies the condition h(p(f,g))= f(¢(g,h)) then g is
an odd-quadratic with the bilinear form
B(X+f,Y+g)=f(Y)+g(X), VX,Yeqg, f,geg .
5. Approach to quadratic Lie algebras by the structure equation
5.1. The associatied 3-form and the structure equation

Given a finite dimensional complex vector space V, equipped with a non-
degenerate symmetric bilinear form B. In [10], G. Pinczon and R. Ushirobira

introduced the notion of the super Poisson bracket on the exterior algebra A(V*) as

follows {Q,Q'}:(—1)k+lzn:zXJ(Q)AzXJ(Q'), vQeA (V') va Q'eA(V) with
j=1

{Xj}f . fixed orthonormal basis of Vv . For a quadratic Lie algebra (g, B), they defined
j=

a trilinear form 1 by 1(X,Y,Z)=B([X,Y],Z)for all X,Y,Zeg then {lI,1}=0.
Moreover, the quadratic Lie algebra structure of (g,B) is completely characterized by
I and there is a one-to-one correspondence between the set of structures of quadratic
Lie algebra and the set of | satisfying {I,1}=0. Then we call | the associated 3-form

and {l,1}=0 the structure equation of (g,B).

12
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Recall that Der (g,B) of skew-symmetric derivations of g is a Lie subalgebra of
Der(g) of derivations of g.

Proposition 5.1. [9]. There exists a natural isomorphism T between Der (g,B) and
the space {QeAZ(g*):{I,Q}=O} that induces an isomorphism from
Der (g, B)/ad(g) onto the second cohomology group H*(g,£).

Next, we shall use this isomorphism to construct a new structure of quadratic Lie
algebra from g as follows. Let 1 be the associated 3-form of g and assume

Qe A*(g')such that {I_,0}=0. On the vector space g=g®L£e®Ef weextend B
to B such that B(e f)=1 and B(e,e)=B(f,f)=0. Set & =B(f,.) and define

l-=aAQ+1 .
g ¢}
Theorem 5.2.

M The element |é defines a quadratic Lie algebra structure on g_;

(i) The element |EJ is the associated 3-form of the double extension of g_; by

T'l(Q) .
Proof.

(i) One has {Ié,lé} ={OCAQ,OC/\Q}+2({|g,a}/\Q—O(/\{|g,Q})+{|g,| I=0.

(ii) Forall XY eg, by [10], [X,Y], =1, (1,) then [e,X]e g and [X,Y], e g@E .
Also, 1.(X,Y,Z)=1(X,Y,Z) 50 E([x,v]é,z)zs([x,v]g,z) and then
[X,Y], = [X.Y], +Q(X,)f.
Let C=T(Q) then
B(e,[X,Y])= l.(e,X,Y)=a(e)Q(X,Y) =B(C(X).Y).

It means Q(X,Y)=B(C(X),Y). By the invariance of B, one has [e, X]=C(X). So
that . defines the double extension of g by C .

Remark 5.3.
(1 In the case g Abelian, i.e. I =0 then it is obviously {lI ,}=0 for any 2-

form Q on g and therefore |é =a AQ. This case has been studied in [5].

13
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(i) If C=ad(X) is an inner derivation of g then the double extension (__g of g
by C has I. =a a1, (1)+1. In this case, ze_x(lf)zo. It means e - X central and then we
9 9

recover a result in [7] that g_; is decomposable.

5.2. Symplectic quadratic Lie algebras

Definition 5.4. Given a Lie algebra g. A non-degenerate skew-symmetric bilinear
form w:gxg— £ is called a symplectic structure on g if it satisfies

o([X,Y],2)+o([Y,Z],X)+@([Z,X],Y) =0, VX,Y,Z eg.

A symplectic structure o on a quadratic Lie algebra (g,B) is corresponding to a
skew-symmetric invertible derivation D defined by @(X,Y)=B(D(X),Y) for all
X,Y eg. As above, a symplectic structure is exactly a non-degenerate 2-form
satisfying {l,}=0. In this case, we call (g,B,®) asymplectic quadratic Lie algebra.

Let (g,B,w) be a symplectic quadratic Lie algebra. Assume Q is a non-
degenerate 2-form satisfying {I,Q}=0 and Q' is another 2-form satisfying {I,Q'}=0.

The double extension g of g corresponding to Q' has Ié =anQ'+1. We set a non-

degenerate 2-form on g by Q. =Q+7€ A(f"+X") with 2+0 and some X eg. We

search a condition of , Q', 4 and X such that Qé define a skew-symmetric

invertible derivation on é and therefore it defines a symplectic structure on é By the
condition {I,Q}=0 one has

0={|§,Q§}={e*/\Q'+|,Q+le*/\(f*+X*)}

={e*AQ',Q}+{e*AQ',/1e*A(f*+x*)}+{|,/1e*A(f*+x*)}

since  {e" A 0,0} =—¢" 7 {0,071, {e*AQ',/le*/\(f*+x*)}=—/1e*AQ' and
{I,Ae*/\(f*+X*)}=—Ae*/\zX(I) so we have {QQ'f+1Q'+A1,(1)=0. Set
D=T%Q), §=T Q") and X, =X so we obtain

[D,5]+ 45 +ad(X,)=0
and then we recover Lemma 4.1 in [3].

Note that in the above case, if we choose Q =Q+/lf*/\(e*+x*) then by a

similar computation we have Q'=0 and X, central. So the above condition is obvious.

14
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