
 

TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH 

TẠP CHÍ KHOA HỌC 
HO CHI MINH CITY UNIVERSITY OF EDUCATION

JOURNAL OF SCIENCE
ISSN: 

1859-3100 
KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ 
Tập 16, Số 3 (2019): 58-75 

NATURAL SCIENCES AND TECHNOLOGY
Vol. 16, No. 3 (2019): 58-75

 Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn 
 

58 

 
A CAUCHY PROBLEM FOR THE ASYMMETRIC PARABOLIC EQUATION 

IN POLAR COORDINATES WITH THE PERTURBED DIFFUSIVITY 
Tran Hoai Nhan1, Ho Hoang Yen2, Luu Hong Phong3 

1 Institude of Natural Education – Vinh University 
2 Faculty of Mathematics and Applications – Sai Gon University  

3 Faculty of Mathematics and Computer Science, University of Science, Vietnam National University – Ho Chi Minh City 
Corresponding author: Ho Hoang Yen – Email: hhyen@sgu.edu.vn 

Received: 01/3/2019; Revised: 15/3/2019; Accepted: 25/3/2019 
 

ABSTRACT 
 The inverse problem for the heat equation plays an important area of study and application. 
Up to now, the backward heat problem (BHP) in Cartesian coordinates has been arisen in many 
articles, but the BHP in different domains such as polar coordinates, cylindrical one or spherical 
one is rarely considered. This paper’s purpose is to investigate the BHP on a disk, especially, the 
problem is associated with the perturbed diffusivity and the space-dependent heat source. In order 
to solve the problem, the authors apply the separation of variables method, associated with the 
Bessel’s equation and Bessel’s expansion. Based on the exact solution, the regularized solution is 
constructed by using the modified quasi-boundary value method. As a result, a Holder type of 
convergence rate has been obtained. In addition, a numerical experiment is given to illustrate the 
flexibility and effectiveness of the used method. 

Keywords: backward heat problem, modified quasi-boundary value method, polar 
coordinates, ill-posed problem. 
 
1. Introduction 

The consideration of the forward heat problem aims at predicting the temperature 
distribution of a body at a future time from the initial temperature, boundary conditions. 
On the contrary, the aim of the backward heat problem (BHP) is to determine the initial 
temperature from the final data. The BHP plays a vital role in practical applications such as 
image deblurring, mathematical finance, hydrologic inversion, mechanics of continuous 
media, so forth. In hydrologic inversion, by reconstructing the contaminant history, sources 
of groundwater pollution are sought and this problem is described by a simple form of the 
well-known advection-convection equation ( ) = ( , )tu b t u f x t   (see in (Atmadja & 
Bagtzoglou, 2003; Quan et al., 2011; Trong & Tuan, 2008). Very recently, in (Tuan et al., 
2016), Tuan et al. have considered the problem which is more general than the problem in 
(Atmadja & Bagtzoglou, 2003; Quan et al., 2011; Trong & Tuan, 2008,). 
 ( ) ( ) = ( , ), ( , ) (0, ),tu b t L u f x t x t T   (1) 

 | = 0,0 < < ,u t T  (2) 

 ( , ) = ( ), ,u x T g x x  (3) 
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where   is a bounded open domain in nR  with smooth boundary ,  ( ),b t  ( ),g x  
( , )f x t  are known functions, and L  is a symmetric elliptic operator. Then, the authors 

applied the filter regularization method to get an approximate solution and obtained the 
Holder type of error estimate (see in (Tuan et al., 2016)). 

Although, there are many works related to the BHP in Cartesian coordinates (Fu et 
al., 2007; Quan et al., 2011; Trong et al., 2009; Trong & Tuan, 2008; Tuan & Trong, 
2011); Tuan et al., 2016), the studies, associated with the BHP in polar coordinates, are 
considered rarely. Recently, an axisymmetric backward heat equation on a disk has been 
investigated by Cheng W. and Fu C. L. In the papers (Cheng & Fu, 2009; Cheng & Fu, 
2010), Cheng and Fu used the spectral method and the modified Tikhonov method for 
regularizing the following problem  

2

02

0

0

1= , 0 < , 0 < < ,

( , ) = ( ), 0 ,
( , ) = 0, 0 ,
(0, ) < , 0 .

u u u r r t T
t r rr

u r T r r r
u r t t T
u t t T



  
     

  


  

 (4) 

In addition, they got the error estimate of logarithmic type which is presented in 
(Cheng & Fu, 2009; Cheng & Fu, 2010). It is remarkable that the measured data ( )r  in 
problem (4) is radially symmetric or axisymmetric, i.e., it depends only on the radius r  
but not on .  Consequently, the solution of problem (4) does not depend on .  Otherwise, 
in practical engineering, the measured data is not always radially symmetric or 
axisymmetric .  Furthermore, the initial temperature not only depends on the final 
temperature distribution but also depends on the heat source. Nevertheless, the papers 
(Cheng & Fu, 2009; Cheng & Fu, 2010) are mainly devoted to the homogeneous case of 
the heat source. To generalize the problem (4), the authors considered the problem of 
finding the initial temperature distribution of the asymmetrically nonhomogeneous 
parabolic equation in polar coordinates in (Triet et al., 2019). By the modified quasi-
boundary method (MQBV) in (Quan et al., 2011), the authors constructed the 
approximated solution and obtained its convergence of Holder type. However, in (Triet et 
al., 2019), the a priori assumption on the exact solution in (Triet et al., 2019) must depend 
on a class of Gevrey spaces. In this paper, the authors improve this weak point by 
assuming the condition (H1) in Section 3. 

Besides that, in reality, the heat coefficient depends on material of the body, but an 
arbitrary body is not completely homogeneous. Therefore, the heat coefficient can be 
perturbed. Motivated by these reasons, in this article, let T  be a positive number, the 
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authors are interested in the problem of determining the temperature distribution 
     ( , , ), ( , , ) 0, 0,2 0,u r t r t a T      satisfying the following problem 

  
2 2

2
2 2 2

1 1= , ,0 < < ,0 < < 2 ,0 < < ,t
u u uu c q r r a t T

r rr r
  


   

     
 (5) 

 ( , , ) = 0,0 < < 2 ,0 < < ,u a t t T    (6) 

 (0, , ) < ,0 < < 2 ,0 < < ,u t t T    (7) 

and the final temperature distribution 
 ( , , ) = ( , ), 0 < < 2 ,0 < < ,u r T f r r a     (8) 

where ( , ),f      2, 0; ;q L a r      , cR  are the final temperature, the heat source and 

the diffusivity, respectively. In reality, the final temperature ,f  the heat source q  and the 
diffusivity c  are obtained by measurement, so there are always errors. Assume that the 
exact data  , ,f c q  and the measured data  , ,f c q    satisfy 

        
2 2

, , , , , , ,f f c c q q 
                 (9) 

and   is a noise level from a measurement. In our knowledge, the works for a Cauchy 
problem for the parabolic equation on a disk are quite scare and even there is no result 
dealt with the perturbed case of the diffusivity and the heat source. It is well-known that 
the problem (5)-(8) is ill-posed. This means that its solution may not exist, and if it exists, 
it does not depend continuously on the given data. In practical engineering, to get the 
initial data, it is a must to use equipment to measure, this leads to the error between exact 
data and measured data. Thus, small error on the measured data may lead to solutions with 
large errors. This makes the numerical computation difficult, so an appropriate 
regularization process is required in order to get a stable solution. In this paper, the MQBV 
is employed to construct the regularized solution for the problem (5)-(8). An appropriate 
"corrector term" is added into the boundary condition to get a regularized solution. 
Furthermore, a numerical example is given to prove the effectiveness of the used method. 

The rest of the paper is organized as follows: In Section 2, some definitions and 
propositions are given to solve the problem (5)-(8). In Section 3, the authors propose the 
regularized solutions for the problem (5)-(8) and obtain the error estimate between the 
regularized solutions and the exact solution. Finally, a numerical experiment is presented 
to illustrate the main results in Section 4. Eventually, there is a conclusion in Section 5. 
2. Some Definitions and Propositions 

Throughout this paper, the authors denote the space of Lebesgue measurable 

functions f  with weight r  on  0; a  by  2 0; ;L a r    through the following definition .  
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Definition 2.1. 

Let > 0a , we define    2 0; ; = { : 0; |L a r f a f    R is Lebesgue measurable with 

weigh r on  0; }a . We can see that the above space is normal space with the norm as 

follows 
1
22

2
0

= ( ) ,
a

f r f r dr
 
 
 
  for  2 0; ; .f L a r     

From here on, definition and some propositions are restated with the helps of the 
references (Frank, 1958; Watson, 1944). 
Definition 2.2. 

Let m  be a non-negative integer. Then we have Bessel functions of the 1st   kind of 
order m   

 
2

0

( 1)( ) = ,
!( )! 2

k mk

m
k

xJ x
k k m





  
   

  (10) 

and Bessel functions of the 2nd   kind of order m   

  21

=0

1 !2 1( ) = ln ( )
2 ! 2

k mm

m m
k

m kx xY x J x
k


 

               
  

 
   

2

=0

11 ,
! ! 2

k k m

k m k
k

xh h
k m k





       
  (11) 

in which 

1

1= lnlim
n

n k

n
k


 

  
 
  is Euler’s constant, 

1

1= .
k

k
i

h
i

  

Proposition 2.3. Let m  be a non-negative integer, the Bessel’s equation of order m  is 
defined as follows 
 2 2 2( ) = 0, > 0,'' 'x y xy x m y x    (12) 

then we have the general solution of equation (12) is 

1 2( ) = ( ) ( ),m my x c J x c Y x  

where ( )mJ x  and ( )mY x  is defined by (10) and (11), respectively.  

Proposition 2.4. The equation ( ) = 0mJ x  has infinite real roots   m
n n

x
Z

 satisfying 

     
1 20 < < < < <m m m

nx x x   
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and   = .lim m
n

n
x


  

3. Regularizing and main results 
By using the method of separation of variables, it can be clear to find out the exact 

solution u  of the problem (5)-(8) corresponding to the exact data  ,f c  as follows 

       
0 1

, , ( , , ) = , , , ,m mn mn
m n

u f c q r t J r u f c q t  
 

 
  (13) 

where 
       , , , = , , ( ) cos , , ( )sin ,mn mn mnu f c q t A f c q t m B f c q t m    (14) 

         2 2
2 2 2 2, , ( ) = exp ( ) ,mn mn

mn mn mn
mn mn

a q a q
A f c q t a f c T t

c c


 
 

   
 

 (15) 

         
2

2 2
1 0 0

2= , cos ,
a

mn m mn
m mn

a f f r m J r rd dr
a J



   
 

   

         
2

2 2
1 0 0

2= , cos ,
a

mn m mn
m mn

a q q r m J r rd dr
a J



   
 

   

         2 2
2 2 2 2, , ( ) = exp ( ) ,mn mn

mn mn mn
mn mn

b q b q
B f c q t b f c T t

c c


 
 

   
 

 (16) 

         
2

2 2
1 0 0

2= , sin ,
a

mn m mn
m mn

b q q r m J r rd dr
a J



   
 

   

         
2

2 2
1 0 0

2= , sin ,
a

mn m mn
m mn

b f f r m J r rd dr
a J



   
 

   

mJ  is the Bessel function order of m, 

= ,mn
mn mna


   is the nth  positive zero of .mJ  

In fact, to gain the final data and the diffusivity, the measured equipment is used. 
Therefore, there will appear the error of the exact data and the measured data. By 
analyzing the exact solution (13), it is shown that the data error can be arbitrarily amplified 

by the familiar "heat kernel"  2 2exp ( ) .mnc T t   Thus, it causes the ill-posedness of the 

problem (5)-(8). To construct a regularized solution for (13), the modified quasi-boundary 

value method is applied. The main idea is to replace the term  2 2exp ( )mnc T t   by a 

"stability term" 
 

   
2 2

2 2 2 2

exp

exp
mn

mn mn

c t

c c T


 



   



 
 to get a stable solution. In particular, the 
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authors formulate the regularized solution u  corresponding to the measured data 
 , ,f c q    as follows 

     
=0 =1

, , ( , , ) = , , ( , ),m mn mn
m n

u f c q r t J r u f c q t 
       

 

  (17) 

where 
     , , ( , ) = , , ( ) cos , , ( )sin ,mn mn mnu f c q t A f c q t m B f c q t m  

            (18) 

       
   

 2 2

2 2 2 22 2 2 2

exp
, , ( ) = ,

exp
mnmn mn

mn mn
mn mnmn mn

c ta q a q
A f c q t a f

c cc c T
 

   
  



    

 
  

  
 

       
   

 2 2

2 2 2 22 2 2 2

exp
, , ( ) = ,

exp
mnmn mn

mn mn
mn mnmn mn

c tb q b q
B f c q t b f

c cc c T
 

   
  



    

 
  

  
 

         
2

2 2
1 0 0

2= , cos ,
a

mn m mn
m mn

a f f r m J r rd dr
a J



     
 

   

         
2

2 2
1 0 0

2= , cos ,
a

mn m mn
m mn

a q q r m J r rd dr
a J



     
 

   

         
2

2 2
1 0 0

2= , sin ,
a

mn m mn
m mn

b f f r m J r rd dr
a J



     
 

   

         
2

2 2
1 0 0

2= , sin ,
a

mn m mn
m mn

b q q r m J r rd dr
a J



     
 

   

and ( )   is regularization parameter such that ( ) 0    when 0.   For the brief, it 

can be denoted that ( ) = .    Without loss of generality, it can be assumed that .exc c   

Lemma 3.1. For 0 < < , > 0,T a  we have the following inequality 

 

1
1 ln .

exp
T T

a aT  


         

 

Lemma 3.2. Let 0 ,t s T    0 < < T  and > 0,a  then we get the following inequalities 

i. 
  

 
�

exp
ln ,

exp

t s
Ts t T a TT

a aT


 


           

 

ii.  
 

�
1exp

ln ,
exp

t
Tta TT

a aT


 

          
 

in which �  = max 1; .T T   

It can be seen that the proofs of these above lemmas in (Quan et al., 2011). 
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Lemma 3.3. Let > 0a , 0 < < ,t T   0 < < min 1; ,T  > > 0c c  and  

   
 

exp
=

exp
atx

x
ax aTx





 

 for > 0x  

We have the following inequality 

    �
�

 
21 1

2
2 ln ln ,

t t
T TT T Tc c aT c c

c    
 

  
                         

 

in which �  = max 1; .T T   

Proof. It is easy to see that   is continuous and derivative on  , .c c  By using the 

Lagrange’s theorem, we obtain  0 ,x c c  satisfying 

   c c   

   0
' x c c   

 
 

    
  

 0 00
2

0 0 0 0

exp expexp
exp exp

atx a aT aTxat atx
c c

ax aTx ax aTx




 

   
  

   
 

� �  
1 1

0

1ln ln

t t
T TT TaTT aT T c c

ax  
 

                               

 

�
�

 
21 1

2
2 ln ln .

t t
T TT T TaT c c

c  
 

  
                        

 

This completes the proof of Lemma 3.3.   
Lemma 3.4. Let > 0a , 0 < < ,t T   0 < < min 1; ,T  > > 0c c  and  

   
 

exp1= 1 for > 0.
exp

atx
x x

xa ax aTx



 

    
 

We get 

   c c   

�
 

� �
 

2 21 1

2 2

2ln ln .

t
TT T T T T Tc c c c

c cac ac 
 

                      
           

 

Proof. By simple calculations, we deduce that 
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 2

exp exp1 1= 1
exp exp

' atx at atx
x

ax aTx xa ax aTxax


 
    

          
 

    
  

0
2

0 0

exp exp
.

exp

atx a aT atx

ax aTx





  

  

 

Similar to Lemma 3.1 - Lemma 3.3, we apply the Lagrange’s theorem, we have 
 0 ,x c c  satisfying 

   c c   

 
 

 
 

0 0
2

0 0 0 0 00

exp exp1 11
exp exp

atx at atx
ax aTx x a ax aTxax  

    
           

 

    
  

 0 0
2

0 0

exp exp

exp

atx a aT atx
c c

ax aTx






  
 
  

 

   
   0 0 0

2
0 00

exp exp1
exp

ax aTx atx
c c

ax aTxax 



   

 
 

 

� �  
1 1

2 21 12 ln ln

t t
T TT TaT T c c

ac c  
 

  
                        

 

�
 

1

2
0 0

lnT T T c c
x ax 

 

        
    

 

� �
 

2 21 1

2

2 ln ln

t t
T TT T T T c c

c ac  
 

  
                        

 

�
 

1

2lnT T T c c
c ac 

        
    

 

� �
 

2 21 1

2

2 ln ln .

t t
T TT T T T c c

c ac  
 

  
                        

 

This completes the proof of Lemma 3.4.   
In this paper, the authors require some assumptions on the exact solution and the heat 

source q  as follows 

 1 :H  There exists a non-negative number A  such that  
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    2 2

0;2 2 2

, , ( , , ) , , ( , ,0) ( , ) ( , , ) .sup u f c q T u f c q f q t A
t t 

   


  
        

    
Theorem 3.1. Let  , ,f c q ,      2 2, , 0; ; 0; ;f c q L a r L a r           R  satisfy the 

condition  9 , 0 < < min{1; }T  and = .   Assume that  , ,u f c q  and  , ,u f c q
   , 

defined by (13) and (17), are corresponding to the exact data  , ,f c q  and the measured 

data  ,, ,f c q    respectively. For  , t      0;2 0; ,T   we obtain the error estimate  

     
1

2
, , ( , , ) , , ( , , ) ln , ,

t
t T
T Tu f c q t u f c q t N t

      



          

 (19) 

in which 

  � 12

2
0,1

2, = 2 ( ) 2 ln

t
t T
T TN t T R c A 






 

           
 

 

           � 1
ln 1 ,

t
tT
TTT A 






 

           
 

 

0,1
0,1 0,1= ,

a


   is the 0th  positive zero of 1J , 

2 4

2 1 1( ) = max 2 1; ; .cR c c
c c
  

 
 

  
Proof. By using the triangle inequality, we infer that 

   
2

, , ( , , ) , , ( , , )u f c q t u f c q t
        

       
2 2

, , ( , , ) , , ( , , ) , , ( , , ) , , ( , , )u f c q t u f c q t u f c q t u f c q t   
              

   
2

, , ( , , ) , , ( , , ) ,u f c q t u f c q t       (20) 

where 

     
0 1

, , ( , , ) = , , ( , ) ,m mn mn
m n

u f c q r t J r u f c q t 
   

 

 
  (21) 

     , , ( , ) = , , ( ) cos , , ( ) sin ,mn mn mnu f c q t A f c q t m B f c q t m  
      (22) 

       
 

 2 2

2 2 2 22 2 2 2

exp
, , ( ) = ,

exp
mnmn mn

mn mn
mn mnmn mn

c ta q a q
A f c q t a f

c cc c T
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 2 2

2 2 2 22 2 2 2

exp
, , ( ) = ,

exp
mnmn mn

mn mn
mn mnmn mn

c tb q b q
B f c q t b f

c cc c T



  



   

 
  

  
 

     
0 1

, , ( , , ) = , , ( , ) ,m mn mn
m n

u f c q r t J r u f c q t   
 

 
  (23) 

     , , ( , ) = , , ( ) cos , , ( )sin ,mn mn mnu f c q t A f c q t m B f c q t m      (24) 

       
 

 2 2

2 2 2 22 2 2 2

exp
, , ( ) = ,

exp
mnmn mn

mn mn
mn mnmn mn

c ta q a q
A f c q t a f

c cc c T




   

 
  

  
 

       
 

 2 2

2 2 2 22 2 2 2

exp
, , ( ) = ,

exp
mnmn mn

mn mn
mn mnmn mn

c tb q b q
B f c q t b f

c cc c T




   

 
  

  
 

From (17), (21), Lemma 3.1 and Lemma 3.2, we estimate 

   
2

, , ( , , ) , , ( , , )u f c q t u f c q t 
        

 
      

2 2

2 2 2 2
0 1

2

exp

exp
mn

mn m mn
m n mn mn

c t
C f f J

c c T



 


 

  

 

 


  

   

 
      

2 2

2 2 2 2 2 2
0 1

2

exp1 1
exp

mn
mn m mn

m n mn mn mn

c t
C q q J

c c c T



  


 

   

 

 

 
    
   

  

�     
1

=0 =1 2
ln

t
T

m n mn m mn
TT C f f J  



         

 

      2 2 2 2
0 1

2
exp mn m mn

m n mn mn

C q q J
c c T 
 


 

  

 

 

  
   

�        
1 1

2 2
ln , , ln , ,

t
TT TT f f T q q     

 

 
                         

 

�
1 1

ln ln

t
TT TT T  

 

 
                   

 (25) 

where 
      = cos sin .mn mn mnC g a g m b g m    

From (22), (24), this implies that  
   , , ( , ) , , ( , )mn mnu f c q t u f c q t 
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2 2 2 2

2 2 2 2 2 2 2 2

exp exp
=

exp exp
mn mn

mn
mn mn mn mn

c t c t
C f

c c T c c T


 

 


     

  
 
     

 

  
 

 
2 2

2 2 2 2 2 2

exp1 1
exp

mn
mn

mn mn mn

c t
C q

c c c T




   

  
   

    
 

 
 

2 2

2 2 2 2 2 2

exp1 1
exp

mn

mn mn mn

c t
c c c T



  



   

 
  

   
 

By applying Lemma 3.3 and Lemma 3.4, we infer that 
   

2
, , ( , , ) , , ( , , )u f c q t u f c q t 

      

    
0 1

mn m mn
m n

C f J 
 

 

   

 
 

 
 

2 2 2 2

2 2 2 2 2 2 2 2

2

exp exp

exp exp
mn mn

mn mn mn mn

c t c t

c c T c c T


 

 

     

  
  
     

 

    
 

 
2 2

2 2 2 2 2 2
0 1

exp1 1
exp

mn
mn m mn

m n mn mn mn

c t
C q J

c c c T


 

   

 

 

  
    

    
  

 
 

2 2

2 2 2 2 2 2

2

exp1 1
exp

mn

mn mn mn

c t

c c c T


  



   

 
  

   
 

    
0 1

mn m mn
m n

C f J 
 

 

   

�
�

 
21 1

22 2 2
2

2

2 ln ln

t t
T T

mn
T T TT c c

c   
 

  
                       

 

 

    
�1

2 2 4
0 1

lnmn m mn
m n mn

T T TC q J
c c

 
 

 

 

           
          

�       
1

2 2

0 1 2

2 ln 2 1

t
T

mn mn m mn
m n

TT c C f J    


  

 

        
  

�     
1

2

2
0 1 2

2 1ln

t
T

mn m mn
m n

T cT C f J
c
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� � �2 21 1 1

2 2 4 2 2 4
0,1 0,1

2ln ln ln

t t
T TT T T T T T T

c c c c
 

   

   
                                     

 

      
0 1 2

2 1 mn m mn
m n

c C q J  
 

 

    

�   �
1 1

2 2

2
2

2 ln ( ) , , ( , , ) ln ( ) ( , )

t t
T TT TT R c u f c q T T R c f

t
     

 

 
                      

 

�
�

1 1
2

2
0,1

( ) ln ( ) ( )2 ln

t
TT T TR c T R c R c T   
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From (13), (23), we obtain 
   

2
, , ( , , ) , , ( , , )u f c q t u f c q t    

   
 
        

2 2 2 2
2 2

2 2 2 2
0 1

2

exp
= exp

exp
mn mn

mn mn m mn
m n mn mn

c c t
c T C f J

c c T

  
  

  

 

 




   

�       
1

2 2 2 2

0 1 2

ln exp

t
T

mn mn mn m mn
m n

TT c c T C f J     


  

 

       
  

�  
1

2

= ln , ( , ,0)

t
t T
T TT u f c

t
 




         

 

�
1

ln .

t
t T
T TT A




       

 (27) 

By combining (25), (26) and (27), let = ,   we get the following estimate 
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in which 
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We note that 
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ln = 0.lim

t
t T
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This completes the proof of Theorem 3.1. 
Remark 3.2. If > 0,t  we see that the error estimate (19) is a Holder type. On the other 
hand, when = 0,t  the error estimate (19) becomes 

     
1

2
, , ( , , ) , , ( , , ) ln ,0 ,Tu f c q t u f c q t N

     



          

 (28) 

in which  

  � �  2

2
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2,0 = 2 ( ) 2 1N T R c A T A  


 
       

 

The estimate (28) is a logarithmic type of convergence rate.  
4. Numerical experiment 

In this section, the authors consider the following problem 

 
2 2

2
2 2 2

1 1= , ,0 < < 1,0 < < 2 ,0 < < 1,t
u u uu c q r r t

r rr r
  


   

     
 (29) 
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(1, , ) = 0,0 < < 2 ,0 < < 1,u t t    (30) 
( , ,1) = ( , ), 0 < < 2 ,0 < < 1,u r f r r     (31) 
(0, , ) < ,0 < < 2 ,0 < < 1,u t t    (32) 

in which 1= 10c   and 
 2 2 2( , ) = (1 ) sin 2 , , = (1 ) sin .f r r r q r r r      (33) 

From (13), we get the exact solution of problem (29)-(32) corresponding to the exact 
data  , ,f c q  

       2 2
=1 2 2 22 5

2 3 2

24sin 2, , ( , , ) = exp (1 )n n n
n n

u f c q r t J r c t
c J

  
 







 

      2 2
1 1 13

1 2 1

16sin 1 exp (1 ) .n n
n n

J r c t
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 (34) 

Next, we consider measured data  , ,f c q    as follows 

( )( , ) = 1 ( , ),

( )( , ) = 1 ( , ),

= ( ),

randf r f r

randq r q r

c c rand







 


 




  
 

 
  
 

 
  

                                                                    (35) 

where ( ) (0,1).rand N :  From (33) and (35), it is easy to see that 

       2 2
, , , , ,f f q q               for all  0; 2 , .c c      

From (17), we get the regularized solution of the problem (29)-(32) corresponding to 
the measured data  , ,f c q    
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  (36) 

Supporting by the Maple program, it is possible to approximate the exact solution 
(34) and the regularized solution (36) associated with first one hundred coefficients. Then 
the authors give the following tables which show the error estimates between the exact 
solution and the regularized solution corresponding to the data error = 10 , = 1,3,i

i i   
respectively. 
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Table 1. Errors between the exact solution and the regularized solutions in case =
3



 

 

  
    

2

, , , , , , , ,
3 3

u f c q t u f c q t
  

         
   

  

t    1
1 = 10     2

2 = 10     3
3 = 10    

0    24.1736 10    21.9801 10    32.8734 10   
0.5    39.2835 10    34.2019 10    46.3828 10   

 

Table 2. Errors between the exact solution and the regularized solutions in case 5=
4


  

  
    

2

5 5, , , , , , , ,
4 4

u f c q t u f c q t
  

         
   

  

t    1
1 = 10     2

2 = 10     3
3 = 10    

0    11.1799 10    23.4353 10    34.4434 10   
0.5    23.7359 10    39.1890 10    31.1814 10   

 

Furthermore, there are some following graphs of the exact solution  , ,u f c q  and 

the regularized solutions  , , ,iu f c q
    = 1,2,3i  (Figure 1, 2) at = 0t . Eventually, 

Figure 3 can visually present the exact solution  , ,u f c q  and the regularized solutions 

 , , , =1...3iu f c q i
    at = 0.5, = 0r t  in the polar coordinates. 

 
Figure 1. The exact solution and the regularized solution corresponding to 1  
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Figure 2. The regularized solutions corresponding to 2  and 3  

 
Figure 3. The exact solution and the regularized solutions corresponding to i , 1,...3i   

in the case 1r  , 0.5t   in the polar coordinates 
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5. Conclusion 
In this paper, the authors considered a backward in time problem of the parabolic 

equation, associated with the perturbed diffusivity and the perturbed space-dependent heat 
source, in polar coordinates. Then the authors proposed the modified quasi-boundary value 
method (MQBV) to regularize this problem and obtained the error estimates between the 

exact solution and its regularized solutions in  2 0; ;L a r    norm. Moreover, a numerical 

experiment shows that the used method is flexible and effective. In the future, desiring to 
research more generally on this problem, the authors will investigate the problem (5)-(8) 
with the time-dependent diffusivity or the space and time-dependent diffusivity. 
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TÓM TẮT 
 Bài toán ngược cho phương trình nhiệt đóng vai trò quan trọng trong nghiên cứu và ứng dụng. 
Cho đến nay, bài toán nhiệt ngược thời gian (Backward heat problem - BHP) trong tọa độ Cartesian 
đã được nghiên cứu trong nhiều bài báo, nhưng BHP trong các tọa độ khác như tọa độ cực, tọa độ 
trụ hoặc tọa độ cầu lại hiếm khi được xem xét. Trong bài báo này, chúng tôi muốn nghiên cứu BHP 
trên một đĩa tròn, đặc biệt hơn, bài toán được xem xét liên hệ với hệ số khuếch tán bị nhiễu và nguồn 
nhiệt phụ thuộc vào không gian. Để giải quyết bài toán này, chúng tôi áp dụng phương pháp khai 
triển chuỗi Bessel. Dựa trên nghiệm chính xác, nghiệm chỉnh hóa được xây dựng bằng cách sử dụng 
phương pháp giá trị tựa biên. Kết quả là, chúng ta có được một ước lượng sai số hội tụ. Ngoài ra, 
một ví dụ số được đưa ra để minh họa tính hiệu quả của phương pháp. 

Từ khóa: bài toán nhiệt ngược, phương pháp giá trị tựa biên, tọa độ cực, bài toán không 
chỉnh. 
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