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ABSTRACT 
The energy levels of the heavy elements In, Sn+ and Sn are presented in this article. 

Dominating corrections beyond the relativistic Hartree-Fock method are included to all orders in 
the Coulomb interaction using the Feynman diagram technique and the correlation potential 
method. The configuration interaction technique is combined with the many-body perturbation 
theory to construct the many-electron wave function for valence electrons and to include core-
valence correlations. The good agreement of the results of our calculation with experiment data 
illustrates the power of the method. 

Keywords: energy levels, relativistic Hartree-Fock, configuration interaction. 
TÓM TẮT 

Tính toán trong gần đúng tất cả các bậc nguyên tố nặng Indi (In) và Thiếc (Sn) 
Trong bài báo này, chúng tôi trình bày phổ năng lượng của các nguyên tố nặng Indi (In), ion 

Thiếc (Sn+) và Thiếc (Sn) với độ chính xác khá cao. Phương pháp Hartree-Fock tương đối tính 
được kết hợp với những hiệu chỉnh trong tất cả các bậc của tương tác Coulomb sử dụng giản đồ 
Feynman và phương pháp thế. Bên cạnh đó, phương pháp lí thuyết nhiễu loạn cho hệ nhiều hạt 
được kết hợp với tương tác cấu hình để xây dựng hàm sóng nhiều electron cho những electron 
ngoài vỏ và bao gồm sự tương quan lõi-vỏ. Sự sai lệch rất ít của kết quả với dữ liệu thực nghiệm 
chứng tỏ được sức mạnh của phương pháp. 

Từ khóa: phổ năng lượng, phương pháp Hartree-Fock tương đối tính, tương tác cấu hình. 
 

1. Introduction 
Apart from huge activity in the theoretical and experimental nuclear physics there are 

also many theoretical works in atomic physics and quantum chemistry with attempts to 
predict the chemical properties of the heavy elements In and Sn, their electron structure 
and the spectra [1-3]. Accurate atomic calculations are very important for a number of 
applications, such as the search for prediction of the properties of atoms and their ions, 
especially in calculation of the spectra of the elements. 

The best results for atoms with one external electron above a closed-shell core are 
achieved by the use of all-order techniques based on different versions of the correlation-
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potential (CP) method [4,5]. For heavy atoms with several valence electrons the highest 
accurate methods include the multiconfigurational Hartree-Fock method (MCHF) [6] and 
different versions of the configuration-interaction (CI) techniques. Here, we apply this 
method to calculate In and Sn+ which have one external electron above a closed-shell core.  

The many-body perturbation theory (MBPT) combined with the CI method to 
include core-valence correlations (the MBPT + CI [7]) turned out to be a very effective 
tool for accurate calculations for many-electron atoms having two or three valence 
electrons [8-10]. In this method, an effective CI Hamiltonian included core-valence 
correlations in second order of the MBPT. The Sn atom have two valence electrons is 
applied to control the accuracy of this method. 

In the present paper, we perform relativistic calculations for the energy levels of the 
heavy element In, the singly-ionized Sn and the neutral Sn applying the same approach as 
our earlier works for superheavy elements E119 and E120+ [11], E113 and E114 [10], 
E120 [8] and E112 [9]. 
2. Method of calculations and results for In and Sn+ 

We have performed the calculations with the use of the method which has been 
described in detail in the previous works [10,11]. Here we repeat its main points with the 
focus on the details specific for current calculations.  

Calculations are done in the VN-1 approximation, which means that the self-consistent 
potential are formed by the N-1 electrons in the core (VN-1 potential). A complete set of 
single-electron orbitals is obtained in this way. The orbitals satisfy the equation  

,                                  (1) 

where ˆ
oh is the relativistic Hartree-Fock Hamiltonian 

2
2 1ˆ . ( 1) N

o
Zeh c mc V
r

    α p β . (2) 

2.1. Correlations 
Calculations start from the relativistic Hartree-Fock (RHF) method in the VN-1    

approximation. States of valence electron are calculated with the use of the correction 
potential ̂ :   

aaaoh   )ˆˆ( .        (3) 

The correlation potential operator ̂  is constructed in such a way that its average 
value for the valence electron coincides with the correlation correction to the energy 

ˆa a   . Here, ̂  is non-local operator. The many-body perturbation theory 

expansion for ̂  starts in second order in the Coulomb interaction. There are direct and 
exchange contributions to the correlation potential.  

ooooh  ˆ
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The calculations may be improved by including three dominating higher-order 
diagrams into the second-order correlation potential [4]. These are (i) screening of the 
Coulomb interaction, (ii) the hole-particle interaction in the polarization operator, and (iii) 
chaining of the correlation potential ̂ . 

In particular, (i) and (ii) are included into the direct diagrams of ̂  using the 
Feynman diagram technique. For the exchange diagrams, we use factors in the second-
order ̂  to imitate the effects of screening. These factors are 62,00 f , 60,01 f , 

85,02 f , 89,03 f , , 97,05 f , ; the subscript denotes the multipolarity 

of the Coulomb interaction. 
2.2. Breit interaction 

The Breit interaction is included to claim high accuracy of the calculations [11]. The 
Breit operator in the zero-energy-transfer approximation has the form  

1 2 1 2( )( )
2

Bh
r

   
 

n n    ,  (4) 

where .rr n , r is the distance between electrons, and   is the Dirac matrix.  
Similar way to the Coulomb interaction, we determine the self-consistent Hartree-

Fock contribution arising from Breit. Other words, Breit interaction is included into self-
consistent Hartree-Fock procedure. This is found by solving Eq. (2) in the potential 

1N C BV V V   , (5)  
here CV is the Coulomb potential, BV  is the Breit potential. 

2.3. QED corrections 
We use the radiative potential method introduced in Ref. [11] to include quantum 

electrodynamics radiative corrections to the energies. The radiative potential has the form 
( ) ( ) ( ) ( )ra d U g eV r V r V r V r   ,                                 (6) 

where UV  is the Uehling potential, gV  is the potential arising from the magnetic 

formfactor and eV  is the potential arising from the electric formfactor. 
As for the case of Breit interaction, this potential is added to the Hartree-Fock 

potential, 

rad
NN VVV   11 .                            (7) 

We included it in the self-consistent solution of the core Hartree-Fock states. Core 
relaxation, demonstrated to be important for the energies of valence p-states, is therefore 
taken into account. 
2.4. Results for In and Sn+ 

The removal energies for the low-lying states s, p1/2, and p3/2 have been calculated. 
The results are presented in Table 1 in different approximations. The “RHF” column 

95,04 f 16 f



TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Dinh Thi Hanh 

 

37 

obtained by solving Eq. (3) without ̂  presents Hartree-Fock energies. The “ (2)̂ ” column 
obtained by solving Eq. (3) with second-order correlation potential (2)̂  presents 
Brueckner energies and the column  “ ( )ˆ  ” listed the ab initio results of the energy levels 
obtained by solving Eq. (3) with all-order ̂ . Moreover, the Breit corrections are also 
calculated in the self-consistent Breit-Hartree-Fock potential with the results are presented 
in the “Breit” column. The “QED” column present the results for quantum electrodynamics 
(QED) radiative corrections. They are calculated at the Hartree-Fock level, with correlation 
corrections included. The Breit and QED corrections are relatively small. Thus, our results 
should only be considered estimates, to give an idea of the size of these corrections. 
However, adding them generally leads to better agreement with the experiment in some 
case for In (for example, 6s, 7s, 5p1/2, 5p3/2 states). 

The results for In and Sn+ are present in Table 1 and compared with the experiment. 
It is clear by looking at the “ ( )ˆ  ” column, the differences in all cases are small, up to 
0.8%. This is consistent with the estimate of the accuracy based on similar method for 
E113 [10]. 
Table 1. Energy levels of In and Sn+ (units cm -1) in different approximations together with 

Breit and QED corrections and experimental data. exp exp .100( ) / .total t tE E E    

Atom State RHF )2(̂  
( )ˆ   Breit QED Total (%)

 
Expt. 

In 6s 20.572 22.749 22.424 -7 -9 22.408 0,5 22.297 
 7s 9867 10.459 10.390 -2 -3 10.385 0,2 10.368 
 8s 5816 6066 6035 -1 -1 6033 0,0 6033 
 5p1/2 41.507 48.839 46.982 -57 25 46.950 0,6 46.670 
 6p1/2 13.979 14.892 14.779 -8 2 14.773 0,5 14.853 
 7p1/2 7488 7809 7768 -3 1 7766 0,6 7809 
 5p3/2 39.506 46.503 44.819 -25 18 44.812 0,8 44.457 
 6p3/2 13.719 14.598 14.491 -4 1 14.488 0,5 14.555 
 7p3/2 7388 7699 7660 -2 0 7658 0,5 7697 

Sn+ 6s 57.995 61.971 60.663 -22 -27 60.614 0,8 61.131 
 7s 30.735 31.967 31.536 -8 -9 31.519 0,7 31.737 
 8s 19.133 19.692 19.492 -4 -4 19.484 0,7 19.615 
 

5p1/2 111.452 120.411 117.545 -117 30 117.458 0,5 
11.801

7 
 6p1/2 44.483 46.383 46.349 -25 3 46327 0,4 46523 
 7p1/2 25.253 25.979 25.955 -10 1 25946 0,6 26114 

 5p3/2 107.358 116.018 113.736 -57 22 113701 0,1 113766 
 6p3/2 43.691 45.499 45.465 -14 2 45453 0,4 45640 
 7p3/2 24.917 25.613 25.590 -6 1 25585 0,6 25751 
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3. Method of calculations and results for Sn  
3.1.  Method of calculations 

We performed the calculations with a method that combines the configuration 
interaction (CI) technique with many-body perturbation theory (MBPT).  

Calculations are carried out in the VN-2 approximation [12]. This means that the 
initial Hartree-Fock procedure is performed for the doubly ionized ion, with the two 
valence electrons removed. This approach has many advantages. It simplifies the inclusion 
of the core-valence correlations by avoiding the so-called subtraction diagrams [7,12]. 
This in turn allows one to go beyond second order in many-body perturbation theory in the 
treatment of core-valence correlations. Inclusion of the higher-order core-valence 
correlations significantly improves the accuracy of the results [2,12]. 

We use the effective CI Hamiltonian for an atom with two valence electrons, 

1 1 1 2 2 1 2
ˆ ˆ ˆˆ ( ) ( ) ( , )effH h r h r h r r    (8) 

The single-electron Hamiltonian for a valence electron has the form 

101
ˆˆˆ  hh , (9) 

where  oh  is the relativistic Hartree-Fock Hamiltonian,  
2

2 2ˆ . ( 1) N
o

Zeh c mc V
r

    αp β , (10) 

and 1̂  is the correlation potential operator, which represents the correlation interaction of 

a valence electron with the core.  
The interaction between valence electrons is given by the sum of the Coulomb 

interaction and the correlation correction operator 2̂ , 

),(ˆˆ
212

21

2

2 rreh 



rr

. (11) 

The operator 2̂  represents screening of the Coulomb interaction between valence 

electrons by core electrons. 
The two-electron wave function for the valence electrons   can be expressed as an 

expansion over single-determinant wave functions, 
 1 2

 

ψ , i i
i

c r r  . (12) 

Where i  are constructed from the single-electron valence basis states calculated in 

the VN-2 potential,  

         1 2 1 2 1 2
1, 
2i a b b ar r r r r r       

 
, (13) 
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The coefficients  and two-electron energies are found by solving the matrix 

eigenvalue problem 

 eff 0H E X  , (14) 

where 
effeff  i jH H  ij  và 1 2 , , { , }nX c c c  . 

Calculation of the correlation correction operators 1̂  and 2̂  is the most 

complicated part. Here, we use MBPT and the Feynman diagram technique to do the 
calculations. The MBPT expansion for ̂  starts from the second order in the Coulomb 
interaction. Inclusion of the second-order operators (2)

1̂  and (2)
2̂  into the effective 

Hamiltonian (8) accounts for most of the core-valence correlations. However, further 

improvement is achieved if higher-order correlations are included into 1̂  and 2̂ .  

Where, the higher orders are included into 1̂  in the same way as for a single-

valence electron atom [4]. Two dominating classes of higher-order diagrams are included 
by applying the Feynman diagram technique to the part of 1̂  that corresponds to the direct 

Coulomb interaction. These two classes correspond to (a) screening of the Coulomb 
interaction between valence and core electrons by other core electrons and (b) the 
interaction between an electron excited from the core and the hole in the core created by 
this excitation [4]. 
Table 2. Screening factors kf  for inclusion of higher-order correlations into the exchange 

part of 1̂  and into 2̂  as functions of the multipolarity k of the Coulomb interaction. 

k 0 1 2 3 4 5 6 

1
ˆ exch  0,62 0,60 0,85 0,89 0,95 0,97 1,00 

2̂  0,90 0,72 0,98 1,00 1,02 1,02 1,02 

 
The screening factors kf  (see Table 2) is introduced to approximate the effect of 

Coulomb interaction by the core electrons in the exchange diagrams. We assume that 
screening factors kf  depend only on the multipolarity of the Coulomb interaction k. The 

screening factors were calculated in our early work [4] and then used in a number of later 
works. It turns out that screening factors have very close values for atoms with similar 
electron structure. The screening factors for 1

ˆ exch  were found by calculating the direct part 

of 1̂  with and without screening. 

ic
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We also use a similar way of approximate inclusion of higher-order correlations via 
screening factors for 2̂ . The values of the factors, however, are different (see Table 2). 

These factors were found by comparing 1̂  in second order and in all orders with both 

screening and hole-particle interaction included.  
A complete set of single-electron states is needed to calculate ̂ and to construct the 

two-electron basis states (13) for the CI calculations. We use the same basis in both cases. 
It is constructed using the B-spline technique [11]. We use 40 B-splines of order 9 in a 
cavity of radius R max = 40 aB, where aB is Bohr's radius. The upper and lower radial 
components , ( )u l

aR r  of the Dirac spinors for single-electron basis orbitals a  in each 

partial wave are constructed as linear combinations of 40 B splines, 
40

, ,

1
( ) ( ).u l u l

a ai i
i

R r b B r



 

(15) 

The coefficients ,u l
aib  

are found from the condition that a  is an eigenstate of the 

Hartree-Fock Hamiltonian 0ĥ  (10). 

3.2. Results for Sn 
The results of our calculations for Sn are presented in Table 3. The column “ ( )ˆ  ” 

listed the ab initio results of the energy levels of the element. Results of calculations with 
second-orders correlation potential appear in the column “ (2)̂ ”; and without correlation 
potential in the columns “CI”. In the column “ ” present the percentage deviation from 
experiment and other calculations. Experimental numbers are taken from [13]. 

It is seen from Table 3 that the deviation from experiment for the ab initio results are 
ranges between 0,1% and 1,0% with the exception of the larger deviation for the 5p2 (J=2) 
configuration of 1,2% and the largest deviation for the 5p6p (J=2) configuration of 1,5%. 
Our final results do not include either Breit or radiative corrections. The reason is that from 
our results for In and Sn+ (see Table 1) the contribution are relatively small. As can be 
seen, the reaults of only few state are better with a small fraction of a percent. This results 
for Sn is the same level as the accuracy for Pb and E114 [10]  

Table 3. Energy levels of Sn (units cm -1). exp exp .100( ) / .total t tE E E    

Config. Term J CI )2(̂  
( )ˆ   (%)  

Expt. 

5p2 3 P  0 0 0 0 0 0 

5p2 3 P  1 1560 1717 1691 0,1 1692 

5p2 3 P  2 3292 3588 3469 1,2 3428 

5p2 1D  2 8519 8762 8698 1,0 8612 
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5p2 1D  0 16.365 18.464 17.316 0,9 17.162 

6s5p 3 P  0 30.970 36.064 34.814 0,5 34.641 

6s5p 3 P  1 31.243 36369 35.193 0,8 34.914 

6s5p 3 P  2 34.827 40.192 38.938 0,8 38.629 

6s5p 1 P  1 38.298 40.519 39.835 0,2 39.257 

5p6p 3D  1 40.375 43.634 42.553 0,5 42.342 

5p6p 3D  2 41.042 44.560 43.864 1,0 43.430 

5p6p 3D  3 45.305 48.209 47.242 0,5 47.007 

5p6p 3 P  1 37.874 44.120 43.456 0,2 43.369 

5p6p 3 P  0 39.186 45.446 43.930 0,3 43.799 

5p6p 3 P  2 46.756 48.427 47.943 1,5 47.235 

5p6d 3 F  2 42.432 45.569 44.119 1,0 43.683 

5p6d 3 F  3 43.450 45.270 44.754 0,4 44.576 

5p6d 3 F  4 47.013 49.200 48.491 0,8 48.107 

5p6p 3D  2 42.923 45.172 44.320 0,4 44.144 

5p6p 3D  1 42.904 45.577 44.687 0,4 44.509 

5p6p 3D  3 46.317 48.822 47.725 0,5 47.488 

 
4. Conclusion 

The energy levels of low-lying s and p states of the heavy elements In, Sn+ and Sn 
have been performed. The accuracy of our calculations is estimated within one percent. 
The results were compared with the experiment for further tests of the accuracy. 
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