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ABSTRACT 
The aim of this paper is twofold. Firstly, we give a global estimate of the Calderón-Zygmund 

type for solutions to double-phase problems in Orlicz spaces via maximal fractional functions. In 
this study, we employ the approach based on a generalized good-λ  technique developed by Tran 
and Nguyen (2019), where regularity results are preserved under the fractional maximal operator. 
This operator is notable for its role in evaluating the oscillation of functions, and there is a close 
relation between this operator and the Riesz potential. Secondly, we present a pointwise estimate of 
the Riesz potential as a consequence of the first result.  

Keywords: Double-phase problems; Orlicz spaces; gradient estimates; Riesz potential; 
fractional maximal functions  

 
1. Introduction 

In this article, we focus our study on the quasilinear elliptic equations with a zero 
Dirichlet boundary condition as described below 

( )( ) ( )( )div , div , in  ,

0  on 
 

,

x u x

u

 ∇ = Ω


= ∂Ω

F 
                                                          (P) 

in which Ω  is an open bounded subset of ( )2n n ≥  and the datum : nΩ→F 
 is a vector 

field. The operators , : nΩ→   are given such that   is measurable concerning the first 
variable and is differentiable with respect to any non-zero second variable while  is a 
Carathéodory function. Moreover, they satisfy the following conditions: 
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+ ≤ ∂
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                                (A1) 

with a fixed constant 0 Lγ< < < ∞  for all non-zero , ny z∈  and 1 2, ,x x x ∈Ω  . The function 

: [0, )a Ω→ ∞  and parameters p, q in (A1) satisfy the following assumptions: 

( ) ( ]0,0 . ,  0,1 ;a C κ κ≤ ∈ ∈                                                                                       (A2) 

1 1 ;  1;q p
p n

κ < ≤ + > 
 

                                                                                            (A3) 

Problem (P) described above is also known as a double-phase problem, and it is solved 
together with the main conditions (A1)-(A3). It is a more general form of the following 
( ),p q -Laplace problem  

( )( ) ( )( )2 2 2 2div div ,p q p qu u a x u u a x− − − −− ∇ ∇ + ∇ ∇ = − +F F F F                     (1.2) 

which is the Euler-Lagrange equation resulting from the energy functional 

( ) 2 2, ( ) , ,p qv v a x v dx
Ω

Ω − −− + ∇∫ F F F F   

where ( ) ( ), : ( )p qv av dxvx
Ω

Ω ∇ ∇= +∫  is called double-phase functional. 

One of the main concerns when studying problem (P) is the regularity of the weak 
solutions, which has attracted the interest of several researchers in recent years. Some 
interesting regularity results will be briefly discussed related to solutions of equation (1.2) 
or some look-alike non-uniformly elliptic equations. In particular, we are interested in the 
global or local gradient estimates of the Calderón-Zygmund type of the solutions in different 
functional spaces. The first results were given by Colombo and Mingione (2016), who 
investigated the local estimate of the distributional solutions to (1.2). Specifically, they prove 
that the relation 

( ) ( ) ( ) ( )loc loc
p q p qa x L u a x u Lγ γ+ ∈ Ω ⇒ ∇ + ∇ ∈ ΩF F                                       (1.3) 

is satisfied by any [ )1,γ ∈ ∞  when 1q
p n

κ
< + . In addition, they provided results when

q p κ≤ + and extended those results to the vectorial case. Byun and Oh (2017) improved 

those results to include the boundary in the case ∂Ω  is a 1,C κ+ subset for some [ ],1 .κ κ+ ∈

They presented the global estimates in Lebesgue space Lγ . An additional contribution to the 
study of problem (1.2) was brought into play by Filippis and Mingione (2019), who handled 
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the tricky borderline case 1q
p n

κ
= +  and confirmed the validity of the strong relation (1.3) 

in this case. Following those results, Tran and Nguyen (2021) carried on the regularity study 
in Lorentz spaces and stated the global gradient estimates for weak solutions to (1.2) via 
fractional maximal operators in the form  

( )( ) ( )
( )( ) ( ), ,, ,, s t s tL L

Cx u xβ βΩ Ω
∇ ≤ FM M                                                   (1.4) 

where  is defined as below 

,  .( , ) ( ) ,  p q nx y y a x y x y= + ∈Ω ∈                                                                (1.5) 

The good-λ  technique has been employed in their proof to obtain interesting 
regularity results in the domain, including the boundary. 

The important and appealing results described above have inspired us to extend the 
study to wider functional spaces. Here, our approach is based on a generalized good-λ  
technique developed by Tran and Nguyen (2019), where regularity results are preserved 
under a fractional maximal function βM . We shall investigate two main results in this paper. 

Firstly, we establish the global Calderón-Zygmund-type inequality for the gradient of weak 
solutions to quasilinear elliptic equations (P) in Orlicz spaces in terms of fractional maximal 
functions. The second one is a pointwise estimate for the Riesz potential. The structure of 
the remaining of this article is as follows. Section 2 presents the notations used in this article 
and gives some preliminary results concerning our proof. Finally, the main results are 
presented and proved in section 3.  
2. Notation and preliminaries 

In this section, we briefly introduce some notations, definitions, properties and useful 
results that will be used throughout the article.  
In what follows, we shall assume that the domain nΩ⊂   with 2n ≥ is open and bounded. 
The notation ( )RB x  stands for an open ball centered at x  with the radius 0R > ; that is, the 

set of all the points { }:ny y x R∈ − < . We write A , when there is no misunderstanding, 

for Lebesgue measure of a measurable set .nA⊂   For the sake of simplicity, we denote by 
data the set of parameters arising from assumptions (A1)-(A3) that controls problem (P) 
under consideration. More specifically, data consists of 

[ ] 1, , , , , ( , ), , , .
L L

n p q L a ua
κ

κ γ ∞ ⋅ ∇  Finally, we utilize C  to denote a universal constant, 

which may be different from line to line. The dependencies of C  on specific parameters will 
be emphasized in parentheses. 

The main result of our article is obtained in Orlicz space. This functional space is 
defined and has basic properties as stated below.  
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Definition 2.1. (Young function) 
A Young function [ ) [ ): 0, 0,Φ ∞ → ∞  is a convex and increasing function that satisfies two 

following limit relations 

0

( ) ( )lim 0,                  lim .
µµ

µ µ
µ µ+ →∞→

Φ Φ
= = ∞                                                               (2.1) 

Lemma 2.2. (Hasto, 2019, Lemma 2.2.7) 
Let Φ  be a Young function; then the following two statements are equivalent: 

a) There exists 1 2τ ≥  such that 1(2 ) ( )µ τ µΦ ≤ Φ  for all 0µ ≥ .                                 (2.2) 

b) There exist two positive constants 1K  and 1p  such that 1
1( ) ( )pa K aµ µΦ ≤ Φ  for any 

1a >  and 0µ > . (2.3) 
Definition 2.3. (Orlicz space)   

Let Φ  be a Young function satisfying (2.2). The Orlicz class ( )ΦΟ Ω  is specified to 
be the set of all real-valued, measurable functions f  defined on Ω  meeting the condition  

( )( ) .f x dx
Ω

Φ < ∞∫   

The smallest linear space containing ( )ΦΟ Ω , equipped with the norm  

( )

( )
inf 0 : 1 ,L

f x
f dxτ

τ
Φ Ω

Ω

   = > Φ ≤  
   

∫  

is called the Orlicz space and is denoted as ( )LΦ Ω . 
We next state the definition of a solution to problem (P) in the distributional sense. 

Definition 2.4. (Distributional solution)  

A function ( )1,1
0u W∈ Ω  satisfying the following condition for every 0 ( )Cϕ ∞∈ Ω  

( ) ( ), , , , ,x u dx x dxϕ ϕ
Ω Ω

∇ ∇ = ∇∫ ∫ F    (2.4) 

is called a distributional solution to (P) under conditions (A1), (A2), and (A3). 
Lemma 2.5. (Byun and Oh, 2017, Proposition 3.5) 

Suppose ( )1,1
0u W∈ Ω  is a distributional solution of (P) under conditions (A1), (A2), 

and (A3) satisfying ( ) ( ) ( )1, , ,x u x L∇ ∈ ΩF  . Then the following variational formula 

holds for every test function 1,1
0 ( )Wϕ∈ Ω  such that ( ) ( )1,x Lϕ∇ ∈ Ω  

( ) ( ), , , , .x u dx x dxϕ ϕ
Ω Ω

∇ ∇ = ∇∫ ∫ F   (2.5) 

Next, we introduce the doubling property of weights used throughout the article. 
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Definition 2.6. (Muckenhoupt weights) Let a weight [ )0: ,nω → ∞  be a locally integrable 

function, we say that pAω∈  if one has 

[ ] ( ) ( )
1

1
1

( ) ( ) ( )

1 1sup
( ) ( )p

r r r

p

p
A

B x r rB x B x

y dy y dy
B x B x

ω ω ω

−

−
−

  
  = < ∞
  
  

∫ ∫ , when 

1 p< < ∞   

[ ] ( ) ( )1 ( ) ( )( )

1 1sup sup ,
( )r rr

A
B x y B xr B x

y dy
B x y

ω ω
ω∈

 
 = < ∞
 
 

∫  when 1p =  

and there exist  constants 0 , 0C ν >  satisfying 

0( ) ( ),
A
B

A C B
ν

ω ω
 
  
 

≤  when ,p = ∞                                                                      (2.6) 

for every ball nB ⊂   and all measurable subsets A B⊂ , where ( ) : ( ) .
A

A x dxω ω= ∫  In this 

case, we denote 0[ ] ( , ).A Cω ν
∞
=  

Definition 2.7. (Weighted Lorentz spaces) Let ( )0,t∈ ∞ , ( ]0,s∈ ∞  and ,Aω ∞∈  the 

weighted Lorentz space ( ),t sLω Ω  is the set of all Lebesgue measurable functions f defined 

on Ω  whose norm satisfying , ( )t sLf
ω Ω

< +∞ , where 

( ),

1

( )
0

: { : ( ) } ,   if , t s

s s
s t

L
df t x f sx

ω

λλ ω λ
λ

∞

Ω

 
= ∈Ω > 
  

< ∞∫                                   (2.7) 

and 

( ),

1

( )
0

: sup {    if .: ( ) }tL
tf x f x s

ω λ
λω λ∞ Ω

>
= ∈ > = ∞Ω                                               (2.8) 

We now also look at the definition of the fractional maximal function. 
Definition 2.8. (Fractional maximal operator) Let β  be a real number in [ ]0,n , the fractional 

maximal operator βM  of f  is given by 

( ) ( )
( )0

sup ,    ,n n

B

f f y dy
ρ

ρ
β

β

ξ

ξ ρ ξ−

>
= ∈∫M 

                                                         (2.9) 

where ( )1 .n
locf L∈ 

 When 0β = , the Hardy-Littlewood maximal function M  is defined as 

( ) ( )
( )0

sup ,    .n n

B

f f y dy
ρ

ρ ξ

ξ ρ ξ−

>
= ∈∫M 

                                                            (2.10) 
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Lemma 2.9. (Tran and Nguyen, (2021), Theorem 4.3) Suppose that Ω  is an open bounded 

domain in n
  such that ∂Ω  belongs to 1,C κ+ class for some [ ],1κ κ+ ∈ . Let ( )1,1

0u W∈ Ω  be 

a distributional solution to (P) under conditions (A1), (A2), and (A3) satisfying 

( ) ( ) ( )1, , ,x u x L∇ ∈ ΩF  . Then for any [ )0, nβ ∈  and 0,1a
n
β ∈ − 

 
, there exist 

( )0 0 , , (0,1)n aε ε β= ∈ , ( , ) 1b b aβ= ≥ , and a constant ( ), , , 0C C data aβ= Ω >  such that 

the estimate  

( )( ) ( )( ){ } ( )( ){ }: , ; , : ,a bx x u x C x x uβ β βε λ ε λ ε λ−∈Ω ∇ > ≤ ≤ ∈Ω ∇ >M M F M     (2.11) 

holds for any 0λ >  and ( )00,ε ε∈ . 

Remark: Results obtained in Tran and Nguyen (2021) were described in the presence 
of βMM  operator. However, Nguyen and  Tran (2020) showed that the good-λ  type bound 

has been improved with βM . Therefore, in (2.11), we state the good-λ  result using βM  

(See  Nguyen & Tran (2020) for further details).  
Definition 2.10. (Riesz potential) If 0 nα< < , then the Riesz potential I fα  of a locally 

integrable function f  on n
  is a function defined by 

( )( ) ( )
n

n
f yI f z dy

z y
α α−=

−∫


.                                                                                  (2.12) 

3. Main results 
Now we state and prove the global gradient estimate in Orlicz spaces via fractional 

maximal function.   
Theorem 3.1. (Global estimate in Orlicz spaces) Let [ )0, nβ ∈  and let (P) be a problem as 

defined in section 1 under conditions (A1), (A2), and (A3) on an open bounded domain Ω . 

Assume that ∂Ω  belongs to 1,C κ+ class for some [ ],1κ κ+ ∈ . Suppose that ( )1,1
0u W∈ Ω  is a 

distributional solution to (P) with a given data satisfying ( ) ( ) ( )1, ,  ,x u x L∇ ∈ ΩF  .  

Let Aω ∞∈  and denote ( )0 , [ ]AC ν ω
∞

= . Then for ( )0,t∈ ∞  and 0 s< ≤ ∞ , there exists a 

constant ( )* * , , , , ,[ ] 0AC C data t s β ω
∞

= Ω >  such that  

( )( ) ( )( ), ,
*

( ) ( )
, , .t s t sL L

x u C x
ω ω

β βΩ Ω
∇ ≤M M F                                                  (3.1) 

Moreover, if :K + +→   is a Young function and (2 ) ( )K z cK z≤  for all 0z ≥  with a 
constant 0c > , then  

( )( )( ) ( )( )( )**, ( ) , ( ) ,K x u x dx C K x x dxβ βω ω
Ω Ω

∇ ≤∫ ∫M M F                            ( 3.2) 
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where the constant ( )** ** , , , ,[ ]AC C data cβ ω
∞

= Ω . 

Proof. First of all, we prove (3.1) for the case 0 s< < ∞ . 

For every ( )0,t∈ ∞  and ( )0,s∈ ∞ , let us fix 0 min 1 ,a
n t
β ν < < − 

 
. By virtue of 

Lemma 2.9, one can find ( )0 0 , , (0,1)n aε ε β= ∈ , ( , ) 1b b aβ= ≥ , and a positive constant 

( ), , ,C C data aβ= Ω  such that the estimate  

( )( ) ( )( ){ } ( )( ){ }: , ; , : ,a bx x u x C x x uβ β βε λ ε λ ε λ−∈Ω ∇ > ≤ ≤ ∈Ω ∇ >M M F M       (H) 

holds for any 0λ >  and ( )00,ε ε∈ .  

Let ( )( ){ }: , aA x x uβ ε λ−= ∈Ω ∇ >M  , ( )( ){ }: , bB x xβ ε λ= ∈Ω >M F , 

( )( ){ }: ,D x x uβ λ= ∈Ω ∇ >M   then A D⊂  for ε  small enough, and the condition (H) 

says that 

.cA B C Dε∩ ≤                                                                                                      (3.3) 

We have 

( ) ( ) ( )
( )                                          .

C C

C

A A A B B A B A B

B A B

= ∩Ω = ∩ ∪ = ∩ ∪ ∩

⊂ ∪ ∩
                                                 (3.4) 

From the definition of ω , ( ) ( )
E

E x dxω ω= ∫ , it implies from (3.4) that  

( ) ( )( ) ( ) .C CA B A B B A Bω ω ω ω ≤ ∪ ∩ = + ∩                                                     (3.5) 

Since Aω ∞∈ , we have  

( ) 0 ( ),
C

C
A B

A B C D
D

ν

ω ω
 ∩
 ∩ ≤
  

                                                                       (3.6) 

where ( )0 , [ ]AC ν ω
∞

= . 

Using (3.3) and (3.6) in (3.5), we deduce that  

( )0( ) ( ) ( ).A B C C Dνω ω ε ω≤ +                                                                                (3.7) 

Applying the inequality ( )( ) 2r r r ra b a b+ ≤ +  with , ,a b r +∈ , it follows from (3.7) that 

  ( )
/ / // / / /

0( ) 2 ( ) 2 ( ) .
s t s t s ts t s t s t s tA B C C Dνω ω ε ω≤ +                                                     (3.8) 

We may rewrite the definition of the norm in weighted Lorentz space and change variables 
from λ  to aε λ−  to get 
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( )( ) ( )( ){ }( )

( )( ){ }( )

,

/

( )
0

/

0

, : ,

             : , .

t s

s ts s
L

s tas s a

dx u t x x u

dt x x u

ω
β β

β

λλ ω λ
λ

λε λ ω ε λ
λ

∞

Ω

∞
− −

∇ = ∈Ω ∇ >

= ∈Ω ∇ >

∫

∫

M M

M

 



                  (3.9) 

Combining estimates (3.8) and (3.9), it follows that  

( )( ) ( )( ){ }( ),

//
( )

0

, 2 : ,t s

s ts s t as s b
L

dx u t x x
ω

β β
λε λ ω ε λ
λ

∞
−

Ω
∇ ≤ ∈Ω >∫M M F   

( ) ( )( ){ }( ) /// /
0

0

               2 : ,
s ts ts t s t as s dC C t x x uν

β
λε ε λ ω λ
λ

∞
−+ ∈Ω ∇ >∫ M  , 

which means 

( )( ) ( )( ) ( )( ), , ,
/ / / / /

0( ) ( ) ( )
, 2 , 2 , .t s t s t s

s s ss t as bs s t s t s t s t as
L L L

x u x C C x u
ω ω ω

ν ν
β β βε ε− − −

Ω Ω Ω
∇ ≤ + ∇M M F M           (3.10) 

For ( )10,t aν −∈ , we may conclude (3.1) by taking ( )00,ε ε∈  in (3.10) such that 

/ / / /
0

12
2

s t s t s t s t asC Cν νε − ≤ . 

When s = ∞ , we may rephrase the definition of the norm in weighted Lorentz space and 

change variables from λ  to aε λ−  to get 

( )( ) ( )( ){ }( )
( )( ){ }( )

,

1/

0( )

1/

0

, sup : ,

                                   sup : , .

t

t

L

t
a a

x u x x u

x x u

ω
β λ β

λ β

λω λ

λε ω λε

∞ >Ω

− −
>

∇ = ∈Ω ∇ >

= ∈Ω ∇ >

M M

M

 


     (3.11) 

Using the inequality ( )( ) 2r r r ra b a b+ ≤ +  with , ,a b r +∈ , it follows from (3.7) that 

  ( )
1/ 1/ /1/ 1/ 1/ 1/

0( ) 2 ( ) 2 ( ) .
t t tt t t tA B C C Dνω ω ε ω≤ +                                                      (3.12) 

Combining estimates (3.11) and (3.12), it follows that  

( )( ) ( )( ){ }( )
( ) ( )( ){ }( )

,

1/
1/

0( )

1//1/ 1/
0 0

, 2 sup : ,     

                                   2 sup : , ,

t

t
t a b b b

L

ttt t a

x u x x

C C x x u

ω
β λ β

ν
λ β

ε λε ω λε

ε ε λω λ

∞
− −

>Ω

−
>

∇ ≤ ∈Ω >

+ ∈Ω ∇ >

M M F

M

 



which means 

( )( ) ( )( ) ( )( ), , ,
1/ 1/ 1/ / /

0( ) ( ) ( )
, 2 , 2 , .t t t

t a b t t t t a
L L L

x u x C C x u
ω ω ω

ν ν
β β βε ε∞ ∞ ∞

− − −

Ω Ω Ω
∇ ≤ + ∇M M F M   (3.13) 

For ( )10,t aν −∈ , we may conclude (3.1) by taking ( )00,ε ε∈  in (3.13) such that 

1/ 1/ / /
0

12 .
2

t t t t aC Cν νε − ≤  
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Next, we prove (3.2). Since (2 ) ( )K z cK z≤  for all 0z ≥ , it follows from Lemma 2.2 that 
when ε  is small enough, there exist constants 1 0I >  and 1 1p >  such that for any 0z > , there 

holds 

( ) ( )1 1 1
1 1( );   ( ).ap bp apa b aK z I K z K z I K zε ε ε ε− − −− − −≤ ≤                                          (3.14) 

Since 1p  only depends on function K  in (3.14), we can choose a  such that 

1
0 min 1 , .a

n p
β ν 

< < − 
 

                                                                                       (3.15) 

For all 0λ > , by Aω ∞∈  and controlled condition (H), it is easily seen that 

( )( ){ }( ) ( )( ){ }( )
( )( ){ }( )0

: , :  ,

                                                        ( ) : , .

a bx x u x x

C C x x u

β β

ν
β

ω ε λ ω ε λ

ε ω λ

−∈Ω ∇ > ≤ ∈Ω >

+ ∈Ω ∇ >

M M F

M

 


      (3.16) 

For all 0z > , let us apply (3.16) by ( )1a K zλ ε −= , one gets 

( )( ){ }( ) ( )( ){ }( )
( )( ){ }( )

1 1

1
0

: , ( ) :  , ( )

                                                            ( ) : , ( ) ,

a b

a

x x u K z x x K z

C C x x u K z

β β

ν
β

ω ω ε

ε ω ε

− + −

−

∈Ω ∇ > ≤ ∈Ω >

+ ∈Ω ∇ >

M M F

M

 


 

which guarantees that 

( )( )( ){ }( ) ( )( )( ){ }( )
( )( )( ){ }( )0

: , :  ,

                                                           ( ) : , ,

a b

a

x K x u z x K x z

C C x K x u z

β β

ν
β

ω ω ε

ε ω ε

− −

−

∈Ω ∇ > ≤ ∈Ω >

+ ∈Ω ∇ >

M M F

M

 


  (3.17) 

since K  is a strictly increasing function. Thanks to (3.14), we can deduce from (3.17) that 

( )( )( ){ }( ) ( )( )( ){ }( )
( )( )( ){ }( )

1

0 2

: , :  ,

                                                           ( ) : , ,

x K x u z x K x z

C C x K x u z

β β

ν
β

ω ω α

ε ω α

∈Ω ∇ > ≤ ∈Ω >

+ ∈Ω ∇ >

M M F

M

 


        (3.18) 

where 1 1
1 1

ap bpIα ε − −=  and 1
2 1

apIα ε −= . 

Integrating two sides of (3.18) over the range [ )0,∞  and then changing the variable on the 

right hand side, we have 

( )( )( ){ }( ) ( )( )( ){ }( )

( )( )( ){ }( )

1
0 0

0 2
0

: , :  ,

                                                     ( ) : , .

x K x u z dz x K x z dz

C C x K x u z dz

β β

ν
β

ω α ω

ε α ω

∞ ∞

∞

∈Ω ∇ > ≤ ∈Ω >

+ ∈Ω ∇ >

∫ ∫

∫

M M F

M

 



          (3.19) 

One notes that  
 



HCMUE Journal of Science Vol. 19, No. 6 (2022): 856-867 
 

865 

( )( )( ) ( )( )( ){ }( )
0

, ( ) : ,K x u x dx x K x u z dzβ βω ω
∞

Ω

∇ = ∈Ω ∇ >∫ ∫M M  , 

so we may choose ( )00,ε ε∈  in (3.19) such that 1
0 2 0 1

1( )
2

apC C C C I νν νε α ε −= ≤  to obtain 

(3.2). 
Theorem 3.2 (Pointwise estimate for the Riesz potential) Let [ )0, nβ ∈  and let (P) be 

a problem as defined in Section 1 under conditions (A1)-(A3) on an open bounded domain 

.Ω  Assume ∂Ω  belongs to 1,C κ+ class for some [ ],1κ κ+ ∈ . Suppose that ( )1,1
0u W∈ Ω  is a 

distributional solution to (P) with a given data satisfying ( ) ( ) ( )1, ,  ,x u x L∇ ∈ ΩF  .   

For any 0 nα< < , there exists a positive constant *C such that 

( )( ) ( )( )*, , ,x u C xα β α β   ∇ ≤   I M I M F                                                      (3.20) 

holds for almost everywhere nx∈ . 
Proof. Applying Theorem 3.1 with ( )K x x=  and Aω ∞∈ , there exists a constant *C only 

depending on , , ,[ ]Adata β ω
∞

Ω such that 

( )( ) ( )( )*, ( ) , ( ) .x u x dx C x x dxβ βω ω
Ω Ω

∇ ≤∫ ∫M M F                                         (3.21) 

holds for any nz∈  and 0ε >  small enough. We may choose ( ) ( )1 ;n
locB zh L

ε
χ += ∈    

and let I hαω = . We will verify that Aω ∞∈  by showing 1Aω∈ , since 1A A∞⊂ . 

Indeed, it is not difficult to prove that for ( ) 1
0

nx xω −= there exists a constant 0L >  such 

that 
( )( ) ( )0 0 ,x L xω ω≤M                                                                                            (3.22) 

for all nx∈ . Using Fubini’s theorem, it implies that I hα satisfies the following inequalities 

for all ( )1 ;n
loch L +∈    and nx∈  

( )( ) ( )I h x LI h xα α≤M ,                                                                                          (3.23) 

which demonstrates that I hα  belongs to 1A .  

Now, we may use the chosen function ( )B zI
εαω χ =   in (3.21), which gives: 

( )( ) ( ) ( )( ) ( )*
( ) ( )

, ,
n n n n

B z B z
n n

y y
x u dydx C x dydx

y x y x
ε ε

β βα α

χ χ
− −∇ ≤

− −∫ ∫ ∫ ∫M M F
   

  . 
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Note that now *C only depends on , ,data βΩ . Thanks to Fubini’s theorem again, it leads to 
the following estimate 

( )
( )( )

( )
( )( )*, ,

( ) ( )
n n n n

B z B zn n

x u x
y dxdy C y dxdy

y x y xε ε

β β
α αχ χ− −

∇
≤

− −∫ ∫ ∫ ∫
M M F

   

 
, 

which can be rewritten as 

( )( ) ( )
( )

( )( ) ( )
( )

*., ., .
B z B z

I u y dy C I y dy
ε ε

α β α β   ∇ ≤   ∫ ∫M M F    (3.24) 

Letting ε  tend to 0 in (3.24) and applying Lebesgue differentiable theorem, we obtain that 
(3.20) holds almost everywhere for nz∈ . The proof is complete. 
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TÓM TẮT 

Bài báo này có hai mục đích. Thứ nhất, chúng tôi đưa ra một ước lượng toàn cục dạng 
Calderón-Zygmund cho nghiệm của bài toán pha kép trong không gian Orlicz sử dụng toán tử cực 
đại cấp phân số. Phương pháp chúng tôi sử dụng trong nghiên cứu này được dựa trên kĩ thuật good-
λ  tổng quát được phát triển bởi Tran, và Nguyen, 2019, trong đó các kết quả về tính chính quy 
nghiệm được bảo toàn qua toán tử cực đại cấp phân số. Toán tử này được biết đến rộng rãi qua vai 
trò của nó trong việc ước lượng sự dao động của các hàm số, và có một mối liên hệ gần gũi giữa nó 
và thế vị Riesz. Trong kết quả thứ hai, chúng tôi trình bày ước lượng từng điểm cho thế vị Riesz như 
là một hệ quả của kết quả thứ nhất.   

Từ khóa: bài toán pha kép; không gian Orlicz; đánh giá gradient; thế vị Riesz; toán tử cực đại 
cấp phân số 
 
 
 


