

TẠP CHÍ KHOA HỌC
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH

Tập 19, Số 10 (2022): 1725-1734

HO CHI MINH CITY UNIVERSITY OF EDUCATION
JOURNAL OF SCIENCE

Vol. 19, No. 10 (2022): 1725-1734
ISSN:

2734-9918
Website: https://journal.hcmue.edu.vn https://doi.org/10.54607/hcmue.js.19.10.3617(2022)

1725

Research Article*
SYNTAX-ENHANCED NEURAL MACHINE TRANSLATION

WITH GRAPH ENCODER
Nguyen Hong Buu Long*, Pham Hong Viet

University of Science, Vietnam National University Ho Chi Minh City, Vietnam
*Corresponding Author: Nguyen Hong Buu Long – Email: nhblong@fit.hcmus.edu.vn
Received: October 11, 2022; Revised: October 25, 2022; Accepted: October 26, 2022

ABSTRACT

Neural Machine Translation (NMT) is a new paradigm in machine translation (MT) powered
by recent advances in sequence to sequence learning frameworks. With the advance of Neural
Networks, NMT has become the most promising MT approach in recent years. Despite the apparent
success, NMT still suffers from one significant drawback in integrating syntactic knowledge into
neural networks. This paper proposes an extension of the NMT model to incorporate additional
syntactic information from constituency trees. We represent the constituency trees under graph forms
encoded by a graph encoder to enhance the attention layer, which allows the decoder to focus on
both sequential and graph representation at each decoding step. The experiments show promising
results of the proposed method on English-Vietnamese datasets, proving the effectiveness of our
syntax-enhanced NMT method.

Keywords: constituent tree; graph neural networks; neural machine translation; syntax

1. Introduction
Neural Machine Translation (NMT) has emerged as the most promising machine

translation approach in recent years, showing great progress with the state-of-the-art result.
Despite promising, NMT still lacks the ability to model deeper syntactic aspects of
languages. Motivated by the success of adding syntactic information to Statistical Machine
Translation (SMT) (Koehn & Hoang, 2007; Wang et al., 2014), we explore these syntactic
aspects in NMT models.

Recent works have established that explicitly leveraging syntactic information can
improve NMT quality. Li et al. (2017) linearized a parse tree into a structural label sequence
and let the model automatically learn syntactic knowledge through it. Eriguchi et al. (2016)
proposed an approach that focuses on the phrase structure of the input sentence to extend
attentional NMT models. Chen et al. (2017) investigated NMT, using explicit source-side
syntactic trees, by proposing a syntax-aware encoder-decoder model. N ̆adejde et al. (2017)

Cite this article as: Nguyen Hong Buu Long, & Pham Hong Viet (2022). Syntax-enhanced neural machine
translation with graph encoder. Ho Chi Minh City University of Education Journal of Science, 19(10),
1725-1734.

https://journal.hcmue.edu.vn/
https://doi.org/10.54607/hcmue.js.19.10.3617(2022)
mailto:nhblong@fit.hcmus.edu.vn

HCMUE Journal of Science Nguyen Hong Buu Long et al.

1726

introduced a method for modeling explicit target syntax by interleaving target words with
their corresponding CCG supertags in NMT systems. However, the above approaches must
normalize the tree structure of syntactic trees to sequential representations, which usually
lose dependencies between nodes.

In this paper, we investigate utilizing syntactic information from constituency trees
under a graph perspective in the context of the NMT framework. Specifically, we employed
a graph encoder to encode the constituency trees as graph vector representations. Second,
we enhance the normal attention layer to adapt with a new graph attention layer (i.e., dual
attention), which decides where the decoder should focus at each decoding step.

This method shows several advantages. Firstly, it could be a way to model extra
syntactic knowledge to NMT systems. Then, it could solve the dependency problem between
nodes in the constituency trees. Finally, dual attention could help NMT models focusing on
sequential and tree representations at each decoding step.
2. Methodology

We first present a brief introduction to NMT background. After that, we focus on our
graph encoder (illustrated in Figure 1), which is the means to encode constituency trees to
continuous representations and dual attention decoder, which is the place that we integrate
the graph representations to each decoding step.
2.1. The NMT background

We use a standard encoder-decoder attention-based model (Bahdanau et al., 2015) in
which the encoder takes the source sentence x as its input and computes a representation for
each word 𝑤𝑤𝑖𝑖 in x. The decoder calculates the target sentence y based on the representation
of the source sentence produced by the encoder.

Traditionally, the encoder and decoder are parametrized by a Recurrent Neural
Network. Recently, Convolutional Neural Networks (Gehring et al., 2017), and
Transformers (Vaswani et al., 2017) with parallel computation and self-attention
mechanisms have also achieved competitive results in NMT. In this paper, we investigated
RNN and Lightweight Convolution (Wu et al., 2019) (a variant of CNN).

Figure 1. Graph encoder architecture

HCMUE Journal of Science Vol. 19, No. 10 (2022): 1725-1734

1727

RNNs compute the hidden representation ℎ𝑡𝑡 of a word 𝑥𝑥𝑡𝑡 based on the previously
hidden state ℎ1:𝑡𝑡−1 or its left context. Bidirectional RNNs comprise two RNNs: one runs in
the forward direction, and another runs in the backward direction. In other words, the
forward RNN presents the left context of the word 𝑥𝑥𝑡𝑡,and the backward RNN presents the
right context of the word 𝑥𝑥𝑡𝑡. The final representation is their concatenation:

ℎ𝑡𝑡 = �ℎ𝑡𝑡
𝑓𝑓𝑓𝑓,ℎ𝑡𝑡𝑏𝑏𝑓𝑓� (1)

Once the source sentence has been encoded, the target sentence y is produced word
by word using an RNN decoder which computes the probability of the next word 𝑦𝑦𝑡𝑡 given a
context vector 𝑐𝑐𝑡𝑡 and previously hidden states of the RNN decoder. The context vector 𝑐𝑐𝑡𝑡 is
calculated using an attention mechanism (Bahdanau et al., 2015).

Similar to BiRNN encoder-decoder architecture, we used Lightweight Convolution
(Wu et al., 2019) for both the encoder and decoder. Depthwise Convolution (DConv):
perform a convolution operation independently over every channel, thereby reducing the
number of parameters significantly from 𝑑𝑑2𝑘𝑘 to 𝑑𝑑𝑘𝑘 with 𝑘𝑘 as the kernel width and 𝑑𝑑 as the
dimension of word embedding. In general, at the position 𝑖𝑖 and direction 𝑐𝑐, the output 𝑂𝑂𝑖𝑖,𝑐𝑐
is calculated as follows:

𝑂𝑂𝑖𝑖,𝑐𝑐 = �
𝑘𝑘

𝑗𝑗=1

𝑊𝑊𝑐𝑐,𝑗𝑗 ⋅ 𝑋𝑋(𝑥𝑥+𝑗𝑗−�𝑘𝑘+12 �),𝑐𝑐

(2)

where 𝑋𝑋 ∈ ℛ𝑛𝑛×𝑑𝑑 is the representation of the sentence.
2.2. Syntactic Graph Encoder

Given a constituency tree 𝑻𝑻, 𝓥𝓥 is the node set of the tree. We first describe the node
embedding algorithm adopted from (Xu et al., 2018):

1. We first transformed the text attribute of node 𝑣𝑣 into a feature vector, 𝒂𝒂𝑣𝑣 by looking
up the embedding matrix 𝑊𝑊𝐸𝐸.

2. Next, we categorized the neighbors of 𝑣𝑣 into two subsets: forward neighbors, 𝒩𝒩⊢(𝑣𝑣)
and backward neighbors, 𝒩𝒩⊣(𝑣𝑣). Particularly, 𝒩𝒩⊢(𝑣𝑣) returns the nodes that 𝑣𝑣 directs to and
vice versa.

3. We aggregated the forward information of 𝑣𝑣’s forward neighbors {𝒉𝒉𝑢𝑢⊢𝑘𝑘−1,∀𝑢𝑢 ∈ 𝒩𝒩⊢(𝑣𝑣)}
with the current node feature ℎ𝑣𝑣⊢𝑘𝑘−1, where 𝑘𝑘 ∈ {1, . . . ,𝐾𝐾} is the iteration index. We did this
by using one of three AGG⊢ mentioned below:

𝒉𝒉𝑣𝑣⊢𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐴𝐴⊢(ℎ𝑣𝑣⊢𝑘𝑘−1,ℎ𝑢𝑢⊢𝑘𝑘−1,∀𝑢𝑢 ∈ 𝒩𝒩⊢(𝑣𝑣)) (3)

4. Similar for backward information:

𝒉𝒉𝑣𝑣⊣𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐴𝐴⊣(ℎ𝑣𝑣⊣𝑘𝑘−1,ℎ𝑢𝑢⊣𝑘𝑘−1,∀𝑢𝑢 ∈ 𝒩𝒩⊣(𝑣𝑣)) (4)

5. Repeat steps (3)∼(5) 𝐾𝐾 times. The concatenation of the final forward and backward

HCMUE Journal of Science Nguyen Hong Buu Long et al.

1728

representation is used as the final bi-directional representation of 𝑣𝑣.

𝑧𝑧𝑣𝑣 = 𝐶𝐶𝑂𝑂𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶(𝒉𝒉𝑣𝑣⊢𝐾𝐾 ,𝒉𝒉𝑣𝑣⊣𝐾𝐾),∀𝑣𝑣 ∈ 𝓥𝓥 (5)

In steps (3) and (5), we aggregated v’s representation by using one of these aggregator
architectures:
 Mean aggregator: This aggregator function takes the element-wise mean of the
vectors in {𝒉𝒉𝑢𝑢⊢𝑘𝑘−1,∀𝑢𝑢 ∈ 𝒩𝒩⊢(𝑣𝑣)} and {𝒉𝒉𝑢𝑢⊣𝑘𝑘−1,∀𝑢𝑢 ∈ 𝒩𝒩⊣(𝑣𝑣)}.
 GCN aggregator: Similar to Mean aggregator, but followed by a feed-forward layer
and a non-linearity activation function:

𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘⊢ = 𝜎𝜎(𝑾𝑾𝑀𝑀𝑀𝑀𝐴𝐴𝐶𝐶(𝒉𝒉𝑢𝑢⊢𝑘𝑘) + 𝒃𝒃),∀𝑢𝑢 ∈ 𝒩𝒩⊢(𝑣𝑣) (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘⊣ = 𝜎𝜎(𝑾𝑾𝑀𝑀𝑀𝑀𝐴𝐴𝐶𝐶(𝒉𝒉𝑢𝑢⊣𝑘𝑘) + 𝒃𝒃),∀𝑢𝑢 ∈ 𝒩𝒩⊣(𝑣𝑣) (7)

where 𝑀𝑀𝑀𝑀𝐴𝐴𝐶𝐶 denotes the element-wise average operator, and 𝜎𝜎 is a nonlinear activation
function.
 Pooling aggregator: In this aggregator, each neighbor’s vector is fed through a fully-
connected neural network, and an element-wise max-pooling operation is applied:

𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘⊢ = 𝑚𝑚𝑚𝑚𝑥𝑥��𝜎𝜎�𝑾𝑾𝑝𝑝𝒉𝒉𝑢𝑢⊢𝑘𝑘 + 𝒃𝒃�,∀𝑢𝑢 ∈ 𝒩𝒩⊢(𝑣𝑣)� � (8)

𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘⊣ = 𝑚𝑚𝑚𝑚𝑥𝑥��𝜎𝜎�𝑾𝑾𝑝𝑝𝒉𝒉𝑢𝑢⊣𝑘𝑘 + 𝒃𝒃�,∀𝑢𝑢 ∈ 𝒩𝒩⊣(𝑣𝑣)� � (9)

where 𝑚𝑚𝑚𝑚𝑥𝑥 denotes the element-wise max operator, and 𝜎𝜎 is a nonlinear activation
function.

The graph embedding vector, 𝑍𝑍 which contains information in the entire graph, is
computed as follows:

𝑍𝑍 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧𝑣𝑣,∀𝑣𝑣 ∈ 𝓥𝓥) (10)

where 𝐴𝐴𝐴𝐴𝐴𝐴 denotes the aggregator.
2.3. Dual Attention Decoder

We found that using an additional attention mechanism not only helped the model
learn the alignment between the source sentence and constituency tree automatically but also
addressed the bottleneck problem when adopting only a single attention mechanism because
a large amount of information when combining features from the source sentence and the
corresponding constituency tree that could not effectively leverage with just one attention
mechanism. Our decoder architecture is illustrated in Figure 2.

HCMUE Journal of Science Vol. 19, No. 10 (2022): 1725-1734

1729

Figure 2. Decoder architecture

The graph attention takes graph hidden ℎ𝑗𝑗 and the decoder state 𝑠𝑠𝑖𝑖−1 as its input. The
context vector �̂�𝑐𝑖𝑖 is computed as:

�̂�𝑒𝑖𝑖𝑗𝑗 = 𝑚𝑚(𝑠𝑠𝑖𝑖−1,ℎ𝑗𝑗) (11)

𝑚𝑚�𝑖𝑖𝑗𝑗 =
𝑒𝑒𝑥𝑥𝑒𝑒(�̂�𝑒𝑖𝑖𝑗𝑗)

∑𝜈𝜈
𝑘𝑘=1 𝑒𝑒𝑥𝑥𝑒𝑒(�̂�𝑒𝑖𝑖𝑘𝑘)

(12)

�̂�𝑐𝑖𝑖 = �
𝜈𝜈

𝑘𝑘=1

𝑚𝑚�𝑖𝑖𝑗𝑗ℎ𝑗𝑗
(13)

where 𝑚𝑚 is the alignment model, which is a feed-forward network, scores how well the inputs
surround position 𝑗𝑗 and the input at position 𝑖𝑖 match. Then, a probability distribution over
the target vocabulary to produce the output:

𝑃𝑃𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥(𝑊𝑊𝑣𝑣[𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖, �̂�𝑐𝑖𝑖] + 𝑏𝑏𝑣𝑣) (14)

where 𝑊𝑊𝑣𝑣 and 𝑏𝑏𝑣𝑣 are model parameters, [𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖, �̂�𝑐𝑖𝑖] demotes a concatenation operation
between 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖, �̂�𝑐𝑖𝑖.

HCMUE Journal of Science Nguyen Hong Buu Long et al.

1730

3. Experiments
We provided our dataset information, configuration settings as well as our

experimental results and analyses.
3.1. Datasets

We used the IWSLT 2015 English-Vietnamese dataset (Cettolo et al., 2015), which
contains around 130 thousand sentence pairs for training, and used tst2012 for tuning model
parameters and early stopping. We evaluate the official test sets tst2013 and tst2015, which
are also included in the IWSLT dataset.

Table 1. Statistics of the English-Vietnamese datasets

Dataset #tokens #types #sents

en vi en vi

train 2,435,771 2,867,788 44,573 21,611 131,263

dev (tst2012) 27,988 34,298 3,518 2,170 1,553

test (tst2013) 26,729 33,683 3,676 2,332 1,268

test (tst2015) 20,850 26,235 3,127 2,059 1,080

For the preprocessing phase, we used byte-pair encoding (BPE) (Sennrich et al., 2016)
with 8000 merge operations to deal with rare and compound words and apply them to both
English and Vietnamese sides. We measured the end translation quality with case-insensitive
BLEU (Papineni et al., 2002). We also applied the bootstrap re-sampling method (Koehn,
2004) to measure the statistical significance (p < 0.05) of BLEU score differences between
the translation outputs of proposed models compared to the baseline.
3.2. Configurations

The proposed models use bi-LSTM with 512 hidden units for the encoder and decoder.
The word embedding dim was set to 512. In the training phase, Adam optimizer (Kingma &
Ba, 2015) with a fixed learning rate of 0.001 was used, and the number of tokens per batch
was 3500. , A number of epochs is set to 10. For the graph encoder, we used 128-dimensional
vectors for node representations. We stacked two layers of graph encoder to learn higher-
level representation. The testing process was executed on Google Colab, which offers
accessible GPUs for each session lasting up to 12 hours. The configuration in Google Colab
consists of 12GB RAM and 16GB NVIDIA Tesla P100 GPU. The training time for the base
and the proposed models is around 40 minutes.
3.3. Results and Discussions

Once the models have been trained, a beam search with the size of 5 is utilized to find
a translation that maximizes the conditional probabilities. First, we start with the results of
the tst2013 test set as shown in Table 2.

HCMUE Journal of Science Vol. 19, No. 10 (2022): 1725-1734

1731

As expected, bi-LSTM results are stronger than CNN ones. In general, we observed that
using graph encoders and additional attention mechanisms leads to an improvement over the
baseline model for both encoders. Particularly, the improvement is 0.53 BLEU for bi-LSTM-
mean and 0.33 BLEU for CNN. This is slightly surprising as the potentially non-local semantic
information should in principle, be more beneficial within a less powerful and local CNN
encoder. Models with mean aggregators appear stronger than others with different aggregators.

Table 2. Experimental results

Model bi-LSTM LightConv

NMT baseline 28.13 27.67

Syntax-enhanced-NMT (mean aggregator) 28.69 27.84

Syntax-enhanced-NMT (max pooling aggregator) 28.36 28.00

Syntax-enhanced-NMT (gcn aggregator) 28.44 27.50

Figure 3. Results on various graph layers
(mean aggregator for bi-LSTM, max pooling aggregator for LightConv)

We also use the tst2013 test set to investigate whether the more graph encoder layers
are stacked, the better performance the model could achieve. To do so, we evaluated our
proposed methods with one to eight layers. As shown in Figure 3, our models with two graph
encoder layers performed the best. In general, there is a downward trend in the BLEU score
as we stack more layers. If the number of layers is excessive, the model will become unstable
due to the vanishing gradient and information redundancy. On the other hand, node
representations cannot propagate far when the number of layers is small.
4. Conclusion

In this paper, we explore a graph encoder to explicitly model the syntactic information
from constituency trees to NMT models. The experiments indicate that the syntax-enhanced

HCMUE Journal of Science Nguyen Hong Buu Long et al.

1732

NMT models really outperformed the baseline and with the help of syntactic information,
the translation quality was improved even on low-resource settings.

In the future, we aim to analyze the effect of immediate nodes as well as tree depth to
each syntactic component during the decoding phase. Moreover, it would be interesting to
study the impact of using source-side syntax together with the target-side syntax in the same
NMT model.

 Conflict of Interest: Authors have no conflict of interest to declare.

 Acknowledgement: We would like to thank the Computational Linguistics
Center,University of Science, Vietnam National University – HCM City for providing
linguistic resources.

REFERENCES

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align
and translate. In Y. Bengio & Y. LeCun (Eds.), 3rd international conference on learning
representations, ICLR 2015, Sandiego, Ca, Usa, May 7-9, 2015, conference track proceedings.
Retrieved from http://arxiv.org/abs/1409.0473

Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., Cattoni, R., & Federico, M. (2015). The iwslt
2015 evaluation campaign. Chen, H., Huang, S., Chiang, D., & Chen, J. (2017, July). Improved
neural machine translation with a syntax-aware encoder and decoder. In Proceedings of the
55th annual meeting of the association for computational linguistics (volume 1: Long papers)
(pp. 1936–1945). Vancouver, Canada: Association for Computational Linguistics. Retrieved
from https://aclanthology.org/P17-1177 doi: https://doi.org/10.18653/v1/P17-1177

Eriguchi, A., Hashimoto, K., & Tsuruoka, Y. (2016, August). Tree-to-sequence attentional neural
machine translation. In Proceedings of the 54th annual meeting of the association for
computational linguistics (volume 1: Long papers) (pp. 823-833). Berlin, Germany:
Association for Computational Linguistics. Retrieved from https://aclanthology.org/P16-1078
doi: https://doi.org/10.18653/v1/P16-1078

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional sequence to
sequence learning. CoRR, abs/1705.03122 . Retrieved from http://arxiv.org/abs/1705.03122

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio & Y.
LeCun (Eds.), 3rd international conference on learning representations, ICLR 2015, San
Diego, Ca, Usa, May 7-9, 2015, conference track proceedings. Retrieved from
http://arxiv.org/abs/1412.6980

Koehn, P. (2004, July). Statistical significance tests for machine translation evaluation. In
Proceedings of the 2004 conference on empirical methods in natural language processing (pp.
388-395). Barcelona, Spain: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/W04-3250

https://aclanthology.org/P17-1177
https://doi.org/10.18653/v1/P16-1078
https://aclanthology.org/W04-3250

HCMUE Journal of Science Vol. 19, No. 10 (2022): 1725-1734

1733

Koehn, P., & Hoang, H. (2007, June). Factored translation models. In Proceedings of the 2007 joint
conference on empirical methods in natural language processing and computational natural
language learning (EMNLP-CoNLL) (pp. 868-876). Prague, Czech Republic: Association for
Computational Linguistics. Retrieved from https://aclanthology.org/D07-1091

Li, J., Xiong, D., Tu, Z., Zhu, M., Zhang, M., & Zhou, G. (2017, July). Modeling source syntax for
neural machine translation. In Proceedings of the 55th annual meeting of the association for
computational linguistics (volume 1: Long papers) (pp. 688-697). Vancouver, Canada:
Association for Computational Linguistics. Retrieved from https://aclanthology.org/P17-1064
doi: https://doi.org/10.18653/v1/P17-1064

Nădejde, M., Reddy, S., Sennrich, R., Dwojak, T., Junczys-Dowmunt, M., Koehn, P., & Birch, A.
(2017, September). Predicting target language CCG supertags improves neural machine
translation. In Proceedings of the second conference on machine translation (pp. 68-79).
Copenhagen, Denmark: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/W17-4707 doi: https://doi.org/10.18653/v1/W17-4707

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). Bleu: A method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics (p. 311-318). USA: Association for Computational Linguistics.
Retrieved from https://doi.org/10.3115/1073083.1073135 doi:
https://doi.org/10.3115/1073083.1073135

Sennrich, R., Haddow, B., & Birch, A. (2016, August). Neural machine translation of rare words
with subword units. In Proceedings of the 54th annual meeting of the association for
computational linguistics (volume 1: Long papers) (pp. 1715-1725). Berlin, Germany:
Association for Computational Linguistics. Retrieved from
https://www.aclweb.org/anthology/P16-1162 doi: https://doi.org/10.18653/v1/P16-1162

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.
(2017). Attention is all you need. CoRR, abs/1706.03762. Retrieved from
http://arxiv.org/abs/1706.03762

Wang, Y., Wang, L., Zeng, X., Wong, D. F., Chao, L. S., & Lu, Y. (2014, June). Factored statistical
machine translation for grammatical error correction. In Proceedings of the eighteenth
conference on computational natural language learning: Shared task (pp. 83-90). Baltimore,
Maryland: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/W14-1711 doi: https://doi.org/10.3115/v1/W14-1711

Wu, F., Fan, A., Baevski, A., Dauphin, Y. N., & Auli, M. (2019). Pay less attention with lightweight
and dynamic convolutions. CoRR, abs/1901.10430 Retrieved from
http://arxiv.org/abs/1901.10430

Xu, K., Wu, L., Wang, Z., Feng, Y., & Sheinin, V. (2018). Graph2seq: Graph to sequence learning
with attention-based neural networks. CoRR, abs/1804.00823. Retrieved from
http://arxiv.org/abs/1804.00823

https://aclanthology.org/P17-1064
https://aclanthology.org/W17-4707
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/W14-1711
http://arxiv.org/abs/1804.00823

HCMUE Journal of Science Nguyen Hong Buu Long et al.

1734

TĂNG CƯỜNG TRI THỨC CÚ PHÁP CHO DỊCH MÁY MẠNG NEURAL
SỬ DỤNG BỘ MÃ HÓA ĐỒ THỊ

Nguyễn Hồng Bửu Long*, Phạm Hùng Việt
Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh, Việt Nam

*Tác giả liên hệ: Nguyễn Hồng Bửu Long – Email: nhblong@fit.hcmus.edu.vn
Ngày nhận bài: 11-10-2022; ngày nhận bài sửa: 25-10-2022; ngày duyệt đăng: 26-10-2022

TÓM TẮT

Dịch máy mạng neural (NMT) là một mô hình mới trong dịch máy (MT) được hỗ trợ bởi những
tiến bộ gần đây trong kĩ thuật học sâu. Với các mạng neural, NMT đã trở thành hướng tiếp cận dịch
tự động hứa hẹn trong những năm gần đây. Mặc dù, đã có những thành công rõ ràng, NMT có một
nhược điểm quan trọng là không có khả năng tích hợp tri thức cú pháp vào mô hình dịch. Bài báo
này đề xuất mở rộng mô hình NMT để kết hợp thông tin cú pháp bổ sung từ cây phân tích cú pháp
thành phần. Chúng tôi biểu diễn các cây cấu trúc thành phần dưới dạng biểu đồ được mã hóa bằng
bộ mã hóa đồ thị để nâng cao cơ chế tập trung, giúp bộ giải mã có thể tập trung vào cả biểu diễn
chuỗi tuần tự và đồ thị ở mỗi bước giải mã. Các thực nghiệm cho thấy kết quả khả quan của phương
pháp được đề xuất trên bộ dữ liệu Anh-Việt, chứng minh tính hiệu quả của phương pháp NMT khi
được tích hợp thêm thông tin tri thức cú pháp.

Từ khóa: cây cú pháp thành phần; mạng neural đồ thị; dịch máy mạng neural; cú pháp

