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ABSTRACT  
This paper studies the proximal point algorithm for the class of generalized 0P  variational 

inequalities. By using the upper semicontinuity result establishing the class of weakly univalent 
operators, we show that the iterative sequence generated by the algorithm is bounded, approaches 
to the solution set of the initial problem, and each of its accumulation points is a solution to the 
problem, provided that the solution set is bounded. We also give an example to show the necessity of 
boundedness. 
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ce 
1. Introduction 

The variational inequalities (VIs) have many applications in different realistic models, 
such as in engineering and economics (Facchinei & Pang, 2003), and contains many classes 
of problems, such as complementarity problems, a system of equations problems, fixed point 
problems, and Nash equilibrium problems (Facchinei & Pang, 2003; Kinderleher & 
Stampacchia, 1980). 

Many different methods for solving VIs were proposed (Facchinei & Pang, 2003). 
Among them are two approaches based on the regularization idea, namely the Tikhonov 
regularization method (TRM) and the proximal point algorithm (PPA). Those two 
algorithms, which are crucial for solving monotone problems (Facchinei & Pang, 2003), are 
expected to be effective when applied to non-monotone problems. Some investigations in 
this direction have been done. For example, the convergence theorems for the Tikhonov 
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regularization method applied to finite-dimensional monotone and pseudo monotone 
problems could be found in Facchinei and Pang (2003) and Tam, Yao, and Yen ( 2008), and 
Nguyen (2006), respectively. For the class of problems more significant than the monotone 
ones, Facchinei and Pang (1998) discussed the application of TRM to generalized 0P  

problems and established the convergence results for the class of subanalytic generalized 0P  
operator problems. Considering the PPA, Martinet (1970) proposed the exact method, and 
Rockafellar (1976) suggested and applied the inexact version for a class of monotone VIs. In 
addition, Noor (2002) used the proximal point method to solve the pseudomotone VIs and 
obtained some convergence theorems. For the non-monotone problems, Yamashita 
(Yamashita & Fukushima, 2001) applied this algorithm to the 0P  complementarity problem 
and constructed several algorithms to solve the original problem. The convergence theorem 
for the general class of generalized 0P  problems when applied both methods is still an open 
question. 

In this paper, we apply the PPA to the class of generalized 0P  problems and examine 
the behaviors of the sequence of solutions generated by this algorithm. We prove that the 
iterative sequence generated by the PPA approaches for the solution set of the original 
problem, given that the solution set is bounded. As a consequence, this sequence is bounded, 
and all of its accumulation points are solutions to the problem. This result has already been 
established for the sequence of solutions generated by the TRM when applied to the 
complementarity 0P  problems in Facchinei and Kanzow (1999). We also provide an 
example to show that the boundedness cannot be dropped. In addition, some new 
convergence of the PPA for the generalized 0P  problem will be obtained. Our proof is based 
on the upper semicontinuity results for the class of weakly univalent operators (Ravindran 
& Gowda, 2000). 

The rest of the paper is organized as follows. In the next section, we formally define 
the concept of variational inequalities and summarize some primary results that are needed 
for the main theorems. Section 3 presents the application of the PPA to the class of VIs of 
the generalized 0P  type and obtains the main results. Finally, section 4 contains some 
remarks and open questions for future studies. 
2. Preliminaries 

This section considers a nonempty subset K  of n
  and a mapping F  from n

  to 
n

 . We also define variational inequality problem given by K  and F  , as well as some 
mathematical tools used to establish the main results in the next section. 
2.1. Generalized 0P  variational inequalities problems 
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Definition 2.1.1. The variational inequality problem defined by K  and F , denoted by 
VI( , ),K F  is to find a vector *x K∈  such that 

( )* *, 0, .F x x x x K− ≥ ∀ ∈                                             (1) 

The set of solutions to this problem is denoted by SOL( , )K F . 

We concentrate on problems attaching with classes of 0 ,P P  operators, which include a class 
of (strict) monotone operators. 
Definition 2.1.2. (More & Rheinboldt, 1973) The mapping ( )1 2, ,..., : n n

nF F F F= →   is 

called 
(i) 0P − function (in the classical sense) on K  if for any pair of distinct vectors x, y in K , 

there exists an index { }( , ) 1, 2,...,k k x y n= ∈  such that 

[ ]( ;) and ( ) ( ) 0k k k k k kx y x y F x F y≠ − − ≥  

(ii) P − function (in classical sense) on  K if for any pair of distinct vectors x, y in K , we 
have that 

( ]
1

;)[max ( ) ( ) 0k k k kk n
x y F x F y

≤ ≤
− − >  

We next extend the definitions for the 0P  and P  operators when K  has a special structure, 

namely Cartesian structure. A subset K  of n
  is called to have the Cartesian structure if it 

can be written as 

1

m
j

j

K K
=

=∏                                                                 (2) 

where each jK  is a nonempty subset of jn
  with 

1
.

m

j
j

n n
=

=∑  Correspondingly, we also 

partition and represent the vector x  in n
  and operator F  in the following way: 

( ) ( )1 2 1 2, , ,  and ( ) ( ), ( ), , ( ) ,m mx x x x F x F x F x F x= =   

where each jx  and ( )jF x  belong to jn
  for all index j  in {1, , }m . 

Definition 2.1.3. (Facchinei & Pang, 1998) Let K  be a set of which structure is given by 
(2). 

(a) F  is a generalized 0P −  function with respect to K  if for any pair of distinct vectors 

x  and y  in K , there exists an index { }0 1, 2,...,mj ∈  such that 

0 0 0 0 0 0 and , ( ) ( ) 0.j j j j j jx y x y F x F y≠ − − ≥  

(b) F  is a generalized P − function with respect to K  if for any pair of distinct vectors 
x  and y  in K , we have that 
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1
max , ( ) ( ) 0.j j j j

j m
x y F x F y

≤ ≤
− − >  

Clearly, if F  is a (strict) monotone operator on set K  given by (2), then F  is also a 
generalized 0( )P P− −  function with respect to K . 

The VI problem, whose defining set K  is given by the Cartesian product, is called the 
partitioned VI. The partitioned VI( , )K F  where F  is a generalized 0( )P P− − function with 

respect to K  is called a generalized 0( )P P  problem. The classes of generalized 0 ( )P P  
problems include some interesting cases. 

• If m n=  (so that 1jn =  for all j  ) and jK +=  , the VI( , )K F  ) reduces to a nonlinear 

complementarity problem (Facchinei & Pang, 2003) with 0 ( )P P− −  function in the classical 
sense. 

• If 1m = , so that 1 ,n n F=  is a generalized 0 ( )P P− −  function on K  if and only if F  

is monotone (strict monotone) on K . 

• If m n=  and ,j j jK a b =   , the problem becomes the box constrained VI (Ravindran 

& Gowda, 2000) and F  is a generalized 0P −  function on K  if and only if F  is a 0P −  

function in the classical sense. If jK =   then F  is a generalized 0P −  ( )P−  function on 

K  if and only if F  is a 0 ( )P P− −  function in the classical sense and the VI( , )K F  reduces 

to the system of equations ( ) 0F x = . 
2.2. Natural map associated with the VI problem 

The natural map has a close relationship with the variational inequality problem and is 
used in many proofs of existing solutions to the VI (Facchinei & Pang, 2003) and in the 
analysis of sensitivity and stability (Facchinei & Pang, 2003). This mapping is constructed 
through the projection operator. 
Proposition 2.2.1. (Kinderleher & Stampacchia, 1980) Let K  be a nonempty, closed convex 
subset of n

 . Then, for any vector x  in n
 , there exists a unique element y  in K  such that 

, .x y x u u K− ≤ − ∀ ∈                                               (3) 

The unique vector y K∈  satisfying (3) is called a projection of x  onto K , denoted 

by ( ).KP x  The mapping : n
KP K→  defined by ( )KP x y=  with y  is the projection of x  

onto K  is called the projection operator. 
We then recall some well-known properties of the projection operator. 
Proposition 2.2.2. Let K  be a nonempty, closed convex subset of n

 . Then ( )KP ⋅  is 
nonexpansive, that is 

( ) ( ) , , .n
K KP x P y x y x y− ≤ − ∀ ∈                                  (4) 
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Definition 2.2.1. Given a nonempty, closed convex subset K  of n
  and a mapping 

.: nF K →  The mapping nat : n
K KF →  defined by 

nat ( ) ( ( )),  with K KF Kv v P v F v v= − − ∈  

is called the natural map associated with the pair ( , ).K F  
We can characterize the set of solutions to the VI problem through the zero set of the 

natural map. 
Theorem 2.2.1. (Facchinei & Pang, 2003) Let K  be a nonempty, closed convex subset of 

n
  and : n nF →  . Then, a vector *x  is a solution to the VI ( , )K F  problem if and only 

if *x  belongs to the zero set of nat 
KF . 

2.3. Univalent and weakly univalent operator 
We next introduce the concept of a weakly univalent operator, which has many useful 

properties in the analysis of the stability of solutions to the VI problem (Ravindran & Gowda, 
2000; Sznajder & Gowda, 1999). 
Definition 2.3.1. We say that : n ng D ⊂ →   is univalent if it is continuous and injective, 

and weakly univalent if there exist univalent functions : n n
kg D ⊂ →   such that kg g→  

uniformly on every bounded subset of .D  
An example of a weakly univalent operator is the natural map associated with the 

generalized 0P  VI problem. 

Lemma 2.3.1. (Facchinei & Pang, 1998) Let VI( , )K F  be a generalized 0P  problem where 

F  is a continuous mapping. Then the natural map nat 
KF  associated with the pair ( , )K F  is a 

weakly univalent operator. 
The following result describes an upper semicontinuity property of the inverse of a weakly 
univalent operator. 
Theorem 2.3.1. (Ravindran & Gowda, 2000) Let : n ng →   be weakly univalent and 

suppose that for a * nq ∈ , 

( )1 *g q−  is nonempty and compact. 

Then for any given 0ε > , there exists a 0δ >  such that for every weakly univalent function 
h  and for every vector q  with 

*sup ( ) ( ) ,h x g x q qδ δ
Ω

− < − <  

we have 

( )1 1 *( ) (1)h q g q Bε− −∅ ≠ ⊆ +  



HCMUE Journal of Science Tran Hong Mo et al. 
 

496 

where ( )1 *: (1)g q Bε−Ω = +  and (1)B  denotes the open unit ball in n
 . Moreover, 1( )h q−  and 

1( )g q−  are nonempty, connected, and uniformly bounded for q  in a neighborhood of *q . 

3. Proximal Point Algorithm for the generalized 0P  VI problem 
The proximal point algorithm used to solve the variational inequality problems is 

proposed by Martinet (1970) and further studied by Rockafellar (1976). It is a popular 
method and often used for solving a class of monotone VI problems, and for a class of 
pseudomonotone ones (El Farouq, 2001; Noor, 2002; Rockafellar, 1976; Tam, Yao & Yen, 
2008). The idea of this method is to substitute the original problem with a sequence of 
auxiliary problems that are, in some sense, better behaved. 
The proximal point algorithm: Choose a point 0x  in n

  and a sequence { }kρ  of positive 

numbers. If 1( 1, 2, )kx k− = …  has been defined, then one can choose as kx  any solution of the 

problem ( )( )VI , kK F  where 
( )

1( ) : ( ) , ,k n
k kF x F x x x xρ −= + − ∈                         (5) 

that is kx K∈  and 

( ) 1, 0, .k k k k kF x x x y x y Kρ −+ − − ≥ ∀ ∈  

To terminate the computation process after a finite number of steps and obtain the 
approximate solution of VI( , )K F , one has to introduce a stopping criterion. (For example, 

one can terminate the computation when 1k kx x θ−− ≤ , where 0θ >  is a constant.) 

First, we establish the solvability of the perturbed problems ( )( )VI , kK F  where K  is 

given by (2) and F  is a generalized 0P -function with respect to K  when implied the PPA 
to the original problem. In order to establish the result, we need the following lemma. 
Lemma 3.1. (Facchinei & Pang, 2003) Let K  be a subset of n

  given by (2), where each 
jK  is a closed convex set and : n nF →   be a generalized 0P -function with respect to 

.K  Then, for every 0ε >  the ( )VI ,K Fε  problem has a unique solution where : n nFε →   

defined by  
( ) ( ) , .nF x F x x xε ε= + ∈  

Theorem 3.1. Let : n nF →   be a generalized 0P -function and continuous on n
  and K  

be given by (2), with each jK  is a closed convex set. Then, for any 1 ,, n
kk x −∈ ∈   the 

( )( )VI , kK F  has a unique solution. 
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Proof. For each natural number k , since F  is a generalized 0P -function with respect to K  

so the mapping ( )
1( ) ( )k

k kG F xρ −⋅ = ⋅ −  is also a generalized 0P -function on K . Then the 

mapping ( )
1

kG  defined by   
( ) ( )
1 ( ) ,( ) ,k kG x G x x x K= + ∈  

is a generalized P -function on K . This mapping is the mapping ( )kF  determined by the 
proximal point algorithm. By applying Lemma 3.1 with 1ε = , we have that the ( )( )

1VI , kK G

problem has unique solution, which leads to the existence and uniqueness of solution to the 

( )( )VI , kK F . 

We next examine some properties of the sequence of solutions { }kx  generated by the 

auxiliary problems. We will see that { }kx  approaches to the solution set SOL( , )K F  under 

some specific conditions of the sequence { }kρ . 

Theorem 3.2. Let VI( , )K F  be a generalized 0P  problem where F  is continuous on n
  and 

assume further that the solution set S : SOL( , )K F=  is nonempty and bounded. Suppose that the 

sequence { }kρ  of positive numbers arising from the proximal point algorithm satisfies 

1 and 0 as k
k

k

x
kρ

ρ
−→ +∞ → →∞                                    (6) 

where { }kx  is the iteration generated by the proximal point algorithm, we have that   

( )lim dist S 0.kk
x

→+∞
=∣  

Furthermore, the sequence { }kx  is bounded, and each of its accumulation points is a solution 

to the original problem. 
Proof. By Theorem 2.2.1, we have that 

( ) 1natS (0)KF
−

=  

Moreover, S is compact and nonempty. Therefore, by Theorem 2.3.1, we deduce that for any 
0ε >  there exists a positive number δ  such that for every weakly univalent mapping h  

satisfying 
nat sup ( ) ( ) ,Kh x F x

ε

δ
Ω

− <                                                 (7) 

we have 

( ) 11 nat (0) (0) (1)Kh F Bε
−−∅ ≠ ⊆ +                                          (8) 

where ( ) 1nat : (0) (1)KF Bε ε
−

Ω = + . We next show that the mapping nat 
,k Kh F=   where nat 

,k KF  is 

the natural map associated with the ( )( )VI , kK F  with the mapping ( )kF  defined by 
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( )( )
1

1( ) ( ) ,k
k

k

F x F x x x
ρ −= + −  

satisfies the condition (7) for sufficiently large positive integer k. It is easy to check that each 
( )kF  is a generalized P -function with respect to K , therefore, by Lemma 2.3.1, it follows 

that nat 
,k KF  is weakly univalent. From the non-expansiveness property of the projection 

operator, for every k∈ , we have 
nat nat
, 1

1( ) ( ) , .k K K k
k

F x F x x x x ερ −− ≤ − ∀ ∈Ω  

Let M  be the radius of the open sphere containing ( ) 1nat (0)KF
−

, since ( ) 1nat (0)KF
−

 is 

compact, it follows that 

( ) ( ) ( )1 1 1nat nat nat(0) (1) (0) (1) (0) (1),K K KF B F B F Bε ε ε ε
− − −

Ω = + = + = +  

that is x M ε≤ +  for every x  in εΩ , hence, for each k∈ , we have 

1nat nat
, ( ) ( ) , .k

k K K
k k

xMF x F x x ε
ε

ρ ρ
−+

− ≤ + ∀ ∈Ω  

By the conditions 1 0
kρ
→  and 1 0k

k

x
ρ
− →  when k  tends to infinity, it follows that there 

exists a positive integer 0k  such that for every 0k k≥ , we have 

1,  and .
3 3

k

k k

xM ε δ δ
ρ ρ

−+
≤ ≤  

Hence, for all 0k k≥ , we have 

nat nat 
,

2( ) ( ) ,
3k K KF x F x x εδ− ≤ ∀ ∈Ω  

which implies 
nat nat
,

2sup ( ) ( ) .
3s

k K KF x F x δ δ
Ω

− ≤ <  

Consequently, by applying the condition (8)  

( ) ( )1 1nat nat 
, 0.(0) (0) (1),k K KF F B k kε

− −
⊆ + ∀ ≥  

Moreover, we can easily check that ( )( )SOL , kK F  coincide with ( )( )SOL , kK F , therefore, 

this fact implies 

{ } ( ) ( )1 1nat nat
, 0(0) (0) (1), .k k K Kx F F B k kε

− −
= ⊆ + ∀ ≥                                  (9) 

Hence, for any 0k k≥ , it holds that 
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( )( ) ( ){ }1 1nat nat dist (0) inf : (0) .k K k Kx F x y y F ε
− −

= − ∈ ≤∣  

This implies that 

( ) ( )( )1natlim dist S lim dist (0) 0.k k Kk k
x x F

−

→+∞ →+∞
= =∣ ∣  

Since the set { }01, , kx x…  is finite, it is also bounded. From (9), since ( ) 1nat S (0)KF
−

=  is 

contained in the ball with radius M , we have that 

0, .kx M k kε≤ + ∀ ≥  

Together, we obtain the boundedness of { }kx . 

Finally, let *x  be any accumulation point of { }kx , then there is a subsequence { }ikx  of { }kx  

converging to *x . For any fixed ,
iki x  is a solution to ( )( )VI , ,ikK F  thus satisfies the 

following inequality for all x  in K  
( ) ( ) , 0,i

i i

k
k kF x x x− ≥  

or, equivalently, 

( ) 1 , 0.i i

i i

i

k k
k k

k

x x
F x x x

ρ
−−

+ − ≥  

In the preceding inequality, since { }kx  is bounded and 
ikρ →∞  as i →∞ , we obtain the 

following inequality for all x  in K  when i →∞  

( )* *, 0,F x x x− ≥  

This shows that x∗  is a solution to the original problem. 
Remark 3.1. We can construct a sequence { }kρ  that satisfies the conditions (6) in the 

following way: First, we choose a positive number 1ρ  and an arbitrary vector 0x  in n
 . We 

will then obtain a unique solution 1x  to the ( )(1)VI ,K F  where 
(1)

1 0( ) ( ) .F x F x x xρ= + −  

Next, we choose a positive number 2ρ  satisfying 

{ } 1
2 1

2

1max , 2  and ,
2

x
ρ ρ

ρ
≥ ≤  

and we continue to obtain the unique solution 2x  to the VI ( )(2),K F  where 
(2)

2 1( ) ( ) .F x F x x xρ= + −  
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Continuing to choose a positive number 3ρ  satisfying 

{ } 2
3 2

3

1max ,3  and ,
3

x
ρ ρ

ρ
≥ ≤  

We obtain the unique solution 3x  to ( )(3)VI ,K F  where 
(3)

3 2( ) ( ) .F x F x x xρ= + −  

By doing this process consecutively, we will construct a sequence { }kρ  which is increasing 

and satisfies 

1 1, , 2.k
k

k

x
k k

k
ρ

ρ
−≥ ≤ ∀ ≥  

Therefore, the sequence { }kρ  satisfies the conditions (6). 

The following example shows that the boundedness condition of SOL( , )K F  in Theorem 
3.2 cannot be dropped. 
Example 1. Let 2K +=   and 2 2:F →   defined by 

2( ) ,F x M x q x= + ∈  
where 

0 1 1
, .

0 0 0
M q

−   
= =   
   

 

Obviously, F  given above is a 0P -function on 2
  so will be a 0P -function on 2

+  in the 

classical sense. Then, the VI( , )K F  becomes the complementarity problem, that is to find 

( )1 2,x x x=  in 2
+  satisfying 

0 and , 0.M x q x M x q+ ≥ 〈 + 〉 =  
More precisely, x  must satisfy 

( )1 2
1 2

2

1
0, 0,  and 1 0.

0
x x

x x
x

−   
≥ ≥ − =   

  
 

From this point, we have that 

( ){ } ( ){ }1 1 2 2SOL( , ) ,1 : 0 0, : 1 .K F x x x x= ≥ ∪ ≥  

We see that this set is nonempty and unbounded. Next, we will construct the sequence of 

solutions { }kx  to the perturbed problems ( )( )VI , kK F  by using the proximal point algorithm 

and examine its iteration. The iteration can be established generally in the following way: 

given an arbitrarily positive number 1ρ  and an initial point 
0
1

0 0
2

x
x

x
 

=  
 

 such that 0
2x  belongs 



HCMUE Journal of Science Vol. 20, No. 3 (2023): 491-504 
 

501 

to (0,1)  and 0
1x  satisfies 0

1 1 0x ρ+ ≤ , for each positive integer 2k ≥ , we choose kρ  as a 
number satisfying 

{ }1

1
1

max , ,

1 ,
2

k k

k
k

k

k
x

ρ ρ

ρ

−

−
−

≥

≤
 

where 1kx −  is the unique solution to the ( )( 1)VI , kK F − . By induction, we obtain the iteration 

{ }kx  satisfying all the following conditions: 

( )
0

2 2

1 0
1 1 2

1

1 ,

0,

,k

k k
k

k

x x

x x x

x

ρ−

=

= + −

>

 

for any k , where 1

2

k

k k

x
x

x
 

=  
 

. The construction of { }kρ  and { }kx  give us the following properties: 

1lim  and lim 0.k
kk k

k

xρ
ρ
−

→+∞ →+∞
= +∞ =  

In other words, the iteration { }kx  generated by the proximal point algorithm in this example 

satisfied all the conditions of Theorem 3.2. Moreover, this iteration also satisfies 0
2 2
kx x=  for 

all k∈  hence it lies on the ray ( ){ }0
1 2 1, : 0x x x ≥ . This leads to 

( ) 0
2dist S 1 ,= − ∀ ∈kx x k∣  

And obviously, this implies 
( ) 0

2 .lim dist S 01
→+∞

= − ≠kk
x x∣  

We can illustrate this easily through the following figure. 
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We next consider two particular cases. First, if the set K  is bounded, we will obtain the 
nonemptiness and boundedness of SOL( , )K F . Moreover, we can drop the assumption that 

1k

k

x
ρ
− 

 
 

 converges to 0 as k  tends to infinity. In summary, we have the following corollary. 

Corollary 3.1. Let VI( , )K F  be a generalized 0P  problem where F  is continuous on n
 . 

Assume further that the set K  is bounded. Then, if the sequence { }kρ  satisfies kρ → +∞  

as k →+∞ , it holds that 
( )lim dist S 0.kk
x

→+∞
=∣  

If SOL( , )K F  is a singleton, the convergence of the iteration is then obtained. 

Corollary 3.2. Let VI( , )K F  be a generalized 0P  problem where F  is continuous on n
 . 

Assume further that the VI( , )K F  has a unique solution *x . Then, if the sequence { }kρ  

satisfies the conditions stated in Theorem 3.2, it holds that  
*lim .kk

x x
→+∞

=  

Remark 3.2. Proposition 3.5.10 (a) in Facchinei and Pang (2003) gives us the uniqueness of 
a solution to the generalized P  problems, then we can apply the PPA to the generalized P  
problems and obtain similar results. 
4. Conclusion 

We have applied the proximal point algorithm to the generalized 0P  problem and 
obtained several properties for the iteration generated by the algorithm, including the 
convergence result. Furthermore, we have constructed an example to illustrate the conditions 
stated in the main theorem.Open problems remain in this topic. For instance, it is of interest 
to study the following questions: 

(Q1) Is the assumption on the convergence to 0 of the sequence 1k

k

x
ρ
− 

 
 

 in Theorem 3.2  a 

redundant one? 
(Q2) Are there any other conditions for the sequence { }kρ  under which we obtain the property 

for the { }kx  stated in Theorem 3.2 and obtain the convergence of { }kx ? 
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TÓM TẮT 

Bài báo này nghiên cứu thuật toán điểm gần kề cho lớp bài toán bất đẳng thức biến phân 0P
suy rộng. Bằng cách sử dụng kết quả về tính nửa liên tục trên của các toán tử đơn diệp yếu chúng 
tối chứng minh dãy lặp sinh bởi thuật toán là bị chặn và bám vào tập nghiệm của bài toán ban đầu 
và mỗi điểm tụ của dãy lặp là nghiệm của bài toán đã cho dưới giả thiết tập nghiệm bị chặn. Chúng 
tôi cũng đưa ra một ví dụ chỉ ra sự cần thiết của tính bị chặn của tập nghiệm. 

Từ khóa: hội tụ; ánh xạ tự nhiên; t hàm 0P ; hàm P; thuật toán điểm gần kề; toán tử đơn điệp; 

bất đẳng thức biến phân 
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