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ABSTRACT 
In this paper, we study two kinds of parametric scalar quasivariational inequality 

problems of the Minty type (in short, (MQIP 1) and (MQIP 2 )). After then, we discuss the 
the upper semicontinuity, the lower semicontinuity, the Hausdorff lower semicontinuity the 
continuity and H-continuity for these problems. The results presented in this paper are 
improve and extend some main results of Lalitha and Bhatia [J. Optim. Theory. Appl. 148,  
281--300 (2011)]. Some examples are given to illustrate our results. 

Keywords: Parametric quasivariational inequality problems of the Minty type. Upper 
semicontinuity, Compactness, Closedness, Lower semicontinuity, Hausdorff lower 
semicontinuity, Continuity, Hausdorff continuity. 

TÓM TẮT 
Tính chất nửa liên tục của các nghiệm của các bài toán 

tựa bất đẳng thức biến phân vô hướng phụ thuộc tham số loại Minty 
Trong bài báo này, chúng tôi nghiên cứu hai loại bài toán bất đẳng thức tựa biến 

phân phụ thuộc tham số loại Minty (viết tắt, (MQIP 1 ) và (MQIP 2 )). Sau đó, chúng tôi 
thảo luận tính nửa liên tục trên, nửa liên tục dưới, nửa liên tục dưới Hausdorff, liên tục và 
tính liên tục Hausdorff cho các bài toán này. Kết quả hiện tại trong bài báo là cải thiện và 
mở rộng một số kết quả chính của Lalitha và Bhatia [J. Optim. Theory. Appl. 148, 281--
300 (2011)]. Một số ví dụ được đưa ra để minh chứng cho các kết quả của chúng tôi.  

Từ khóa: các bài toán tựa bất đẳng thức biến phân loại Minty phụ thuộc tham số, 
tính nửa liên tục trên, tính nửa liên tục dưới, tính nửa liên tục dưới Hausdorff, tính liên tục, 
liên tục Hausdorff. 

 

1. Introduction and Preliminaries 
A vector variational inequality problem was first introduced and studied by 

Giannessi [4] in the setting of finite-dimensional Euclidean spaces. Since then, many 
authors have investigated vector variational inequality problems in abstract spaces, see 
[1, 3] and the references therein. Recently, Lalitha and Bhatia [6] have considered a 
parametric scalar quasivariational inequality problem of the Minty type, and kinds of 
the semicontinuity are also obtained. Motivated by research works mentioned above, in 
this paper, we introduce two kinds of parametric quasivariational inequality problems 
of the Minty type in Hausdorff topological vector spaces. 
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Let X, Y be two Hausdorff topological vector spaces and ,   be two topological 
vector spaces. Let ( , )L X Y  be the space of all linear continuous operators from X  into 
Y , and A X  be a nonempty subset. Let 1 2: 2 , : 2A AK A K A   and 

( , ): 2L X YT A  are set-valued mappings. And let : A A A    be continuous 
single-valued mapping. Denoted ,z x   by the value of a linear operator ( ; )z L X Y  at 
x X , we always assume that .,.   is continuous.  

We consider the following parametric quasivariational inequality problems of the 
Minty type (in short, (MQIP 1 ) and (MQIP 2 )), respectively. 

(MQIP 1 ) Find 1( , )x K x   such that ( , )z T y     and  

2, ( , , ) 0, ( , ).z y x y K x        
(MQIP 2 ) Find 1( , )x K x   such that  ( , )z T y     and 

2, ( , , ) 0, ( , ).z y x y K x        
For each ,   , and let 1( ) : { : ( , )}E x A x K x    . We denote 1( , )S    

and 2 ( , )S    are solution sets of (MQIP 1) and (MQIP 2 ), respectively. By the 
definition, the following relation is clear: 2 1( , ) ( , )S S    . 

Throughout the article, we assume that 1( , )S      and 2 ( , )S      for each 
( , )   in the neighborhoods 0 0( , )   . 

Now we recall some notions (see, [1-5]). Let X  and Z  be as above and 
: 2ZG X   be a multifunction. G  is said to be lower semicontinuous (lsc) at 0x  if 

0( )G x U   for some open set U Z implies the existence of a neighborhood N  of 

0x  such that, for all , ( )x N G x U   . An equivalent formulation is that: G  is lsc at 

0x  if 0x x  , 0 0 0( ), ( ),z G x z G x z z       . G  is called upper semicontinuous 
(usc) at 0x  if for each open set 0( )U G x , there is a neighborhood N  of 0x  such that 

( )U G N . G  is said to be Hausdorff upper semicontinuous (H-usc in short; Hausdorff 
lower semicontinuous, H-lsc, respectively) at 0x  if for each neighborhood B  of the 
origin in Z , there exists a neighborhood N  of 0x  such that, 0( ) ( ) ,G x G x B x N     
( 0( ) ( ) ,G x G x B x N    ). G  is said to be continuous at 0x  if it is both lsc and usc at 

0x  and to be H-continuous at 0x  if it is both H-lsc and H-usc at 0x . G  is called closed 
at 0x  if for each net 0 0{( , )} graph : {( , ) ( )}, ( , ) ( , )x z G x z z G x x z x z      ∣ , 0z  must 
belong to 0( )G x . The closedness is closely related to the upper (and Hausdorff upper) 
semicontinuity.  
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Lenmma 1.1. ([2])  
Let X  and Z  be two topological vector spaces and : 2ZG X   be a 

multifunction. 
(i) If Z  is compact and G  is closed at 0x , then G  is usc at 0x ; 
(ii) If G  is usc at 0x  and 0( )G x  is closed, then G  is closed at 0x ; 
(iii) If G  is usc at 0x  then G  is H -usc at 0x . Conversely if G  is H -usc at 0x  and if 

0( )G x  compact, then G  usc at 0x ; 
iv) If G  is H-lsc at 0x  then G  is lsc. The converse is true if 0( )G x  is compact;   

2. Upper semicontinuity of solution sets 
In this section, we discuss the upper semicontinuity of  the  solution sets for the 

problems (MQIP 1 ) and (MQIP 2 ). 
Theorem 2.1.  

Assume for the problem 1( )MQIP that 
(i) E  is usc  at 0  and 0( )E   compact set; 
(ii) in 1 0( , ) { }K A   , 2K  is lsc; 
(iii) in 2 1 0( ( , ), ) { }K K A    , T  is usc and compact-valued. 

Then, 1S  is usc at 0 0( , )  . Moreover, 1 0 0( , )S    is compact and 1S  is closed at 

0 0( , )  . 
Proof.  

We first prove that 1S  is upper semicontinuous at 0 0( , )  . Indeed, we suppose to 
the contrary the existence of an open subset U  of 1 0 0( , )S    such that for all {( , )}n n   
convergent to 0 0{( , )}  , there is 1( , )n n nx S   , nx U , for al n . Since E  is usc and 
compact-valued at 0 , we can assume that nx  tends to 0x  for some 0 0( )x E  . If 

0 1 0 0( , )x S   , 0 2 0 0 0 0 0( , ), ( , )y K x z T y      such that 

0 0 0 0, ( , , ) 0.z y x     
By the lower semicontinuity of 2K  at 0 0( , )x  , there exists 2 ( , )n n ny K x   such 

that 0ny y . Since 2 ( , )n n nx S   , ( , )n n nz T y    such that 
, ( , , ) 0.n n n nz y x     (2.1) 

Since T  is usc and compact-valued at 0 0( , )y  , there exists 0 0 0( , )z T y   such 
that 0nz z  (can take a subnet  if necessary). On the other hand, by the continuity of 
  and .,.  , hence it follows from (2.1) that 

0 0 0 0, ( , , ) 0,z y x     
it is impossible. Hence, 0x  belongs to 1 0 0( , )S U   , which is again a contradiction, 
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since nx U , for all n . Therefore, 1S  is usc at 0 0( , )  . 
Now we prove that 1 0 0( , )S    is compact by checking its closedness. Let 

1 0 0( , )nx S    converge to 0x . If 0 1 0 0( , )x S   , there exists 0 2 0 0( , )y K x   such that 

0 0 0 0, ( , , ) 0.z y x      (2.2) 
Proceeding similarly as before, we arrive at a contradiction to (2.2). Hence 

0 1 0 0( , )x S   . Therefore, 1 0 0( , )S    is closed. The compactness of 0( )E   derives that 
of 

1 0 0( , )S   . By the condition (ii) of Lemma 1.1, it follows that 1S  is closed at 

0 0( , )  . And so we complete the proof.  �  
The following example shows that the upper semicontinuity and the compactness 

of E  are essential. 
Example 2.1. 

Let 0, [0,1], 0A B X Y         � , 1 2, : 2AK K A , ( , ): 2L X YT A  
and : A A A    be  defined by 

1( , ) ( 1, ]K x      , 2( , , ) { 2}y x      , 

2

1( , ) { }
2

T y   , 
2 1

2 ( , ) [0, ]K x e  , 

Then, we have (0) ( 1,0]E    and ( ) ( 1, ], (0,1]E         . We show that 
assumptions (ii) and (iii) of Theorem 2.1  are fulfilled. But 1S  is neither usc nor closed 
at (0,0) . The reason is that E  is not usc at 0  and (0)E  is not compact. 

In fact,  

1

(0,1) if 0,
( , )

(-1- , ) er .
S

oth wise


 
 


 


 

The following example shows that the lower semicontinuity of 2K  in Theorem 
2.1 is essential. 
Example 2.2. 

Let A B X Y    � ,  [0,1]    , 0 0  , 1 :     2AK A    ,  

1 :     2AK A    ,   ,  :   2L X YT A     and :     A A A     be defined by 

 
 
 2 

6,0,6 if 0

0,6 if 0.
,K x






 



 


 

   ,  ,    ,y x x y      
   , 1T y    
   1 , 0,6K x   . 

Then      0,  6 , 0,1 .E      Hence E is usc at 0 and E(0) is compact, assumption 
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(iii) is satisfied. We have 

   
1 

6 if 0
[0,6] if (0,1].

,S 









 


 

Therefore, 1S  is not usc at  0,0 . The reason is that 2K  is not lsc at  ,0 .x   
The following example shows that the all assumptions of Theorem 2.1 are 

satisfied. 
Example 2.3. 

Let X Y  � ,   0[0,3], = 0,  1 , 0A B       , 1 2 , :     2 ,AK K A     and 
:    A A A    be defined by 

     1 2, , 0,1 ,K x K x     
   2, , ,y x        

  4 2

1,   
2cos

T y
e sin




    
   

. 

We see that the all assumptions of Theorem 2.1 are satisfied. So, 1S  is both usc 
and closed at  0,0 . In fact,      1   = 0 1 , 0,1S     . 
Theorem 2.2. 

Assume for the problem 2( )MQIP that 
(i) E is usc at 0  and 0( )E  compact set; 
(ii) in    1 0 2, ,K A K   is lsc; 

(iii) in     2 1 0, , ,K K A T    is lsc. 
Then, 2S  is usc at  0 0,  . Moreover,  2 0 0,S    is compact and 2S  is closed at 

 0 0,  . 
Proof. We omit the proof since the technique is similar as that for Theorem 2.1 with 
suitable modifications.                                                                                  �  
Remark 2.1. 

(i) In the special case, if let    and     1, , , ,y x y x K x      

 , ,K x A     2 , ,K x K x   with : 2AK A . Then, the problems 

2( )MQIP becomes   MVI   is studied in [6]. 
(ii) In cases as above. Then, Theorem 3.1 in [6] is a particular case of Theorem 2.2. 

Moreover , the following example 2.4 shows a case where the assumed compactness in 
Theorems 3.1 and 3.2 of [6] is violated but the assumptions of Theorem 2.2 are ulfilled. 
Example 2.4.  

Let X Y  � ,     00,  1 , 0,3 , 0,A B        1 2 :  2AK K K A   , 
 ,:  2L X YT A  and :  A A A    be defined by  
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     1 2

1 3, , , , ,
2 2

K x K x K x     
  

                                   

   ,  ,   ,y x x y      
   , 1T y    . 

We show that the assumptions of Theorem 2.2 are easily seen to be fulfilled and 
so 2S  is usc and closed at  0,0 . However, Theorems 3.1 and 3.2 in [6] does not work. 
The reason is that A is not compact. In fact,      2 , 3 , 0,1S      . 
3. Lower semicontinuity of solution sets 

In this section, we discuss the lower semicontinuity and the Hausdorff lower 
semicontinuity of the exact solution for the problems (MQIP 1) and (MQIP 2 ). 
Theorem 3.1. 

Assume for the problem (MQIP 1 ) that 
(i) E  is lsc at 0 , 2K  is usc and  compact-valued in 1 0( , ) { }K A   ; 
(ii) in 2 1 0( ( , ), ) { }K K A    ,  T  is lsc. 
Then 1S  is lsc at 0 0( , )  . 

Proof. 
Suppose to the contrary the existences of 0 1 0 0( , )x S    and net {( , )}n n   

converging to 0 0( , )   such that, for all 1( , )n n nx S   , the net { }nx  does not converge 
to 0x . Since (i), there is ( )n nx E   , 0nx x  . By the above contradiction assumption, 
there must be a subnet { }kx  of { }nx  such that 1( , )k k kx S    , for all k , i.e., 

2 ( , ), ( , )k k k k k ky K x z T y      
(ii) , ( , , ) 0.k k k kz y x                                                                  (3.1) 

By the upper semicontinuity and the compactness of 2K  and T , there exists 

0 2 0 0( , )y K x   and 0 0 0( , )z T y   such that 0ky y  and 0kz z  (can take subnets if 
necessary). By the continuity of   and .,.  , and since (3.1) we  have 

0 0 0 0, ( , , ) 0,z y x     
which is impossible since 0 1 0 0( , )x S   . Therefore, 1S  is lsc at 0 0( , )  .                  �  

The following example shows that the lower semicontinuity of E   is essential. 
Example 3.1. 

Let 0, [0,1], [0,1], 0X Y A B         � , 1 2, : 2AK K A ,  
( , ): 2L X YT A  and : A A A    be  defined by 
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 1 

1 1,0, if 0
3 3
10, i

,
f 0.

3

K x





   
 
  


 
 
 




 

4 2( , , ) sin ( ) sin ( ),y x        
2 3( , ) {5 }T y   , 

2
1( , ) [0, ].
3

K x     

Then, we shows that 2K  is usc and compact-valued in 0{ }A   and the 
assumptions (ii) and (iii) of Theorem 3.1 are fulfilled. But 1S  is not lsc at (0,0) . The 
reason is that  E  is not lsc at 0 . In fact, 

 1 

10, if (0,1]
3
1 1,0, if 0.
3 3

,S


 


   
 
 


 

 
 




 

The following example shows that the all assumptions of Theorem 3.1 are 
satisfied. 
Example 3.2.  

Let 0, [0,1], 0A B X Y         � , 1 2, : 2AK K A , ( , ): 2L X YT A  
and : A A A    be defined by 

 1 

1[0, ] if 0
2
1 2[ , ] if 0.
2 2

,K x












 







 

4 2( , , ) { sin ( ) cos ( )},y x        

2 2

1( , ) { },
2

T y





  

2 ( , ) [0,1].K x    
We have ( ) [ 1,2]E     for all (0,1]   and (0) [0,1]E  . It is not hard to see that 

(i)-(iii) in Theorem 3.1 are satisfied and, according to Theorem 3.1, 1S  is lsc at (0,0) . 

In fact, 1
1 2( , ) [ , ]
2 3

S      for all (0,1]   and  1
1(0,0) [0, ]
2

S  ). 

Theorem 3.2. Assume for the problem (MQIP 2 ) that 
(i) E  is lsc at 0 , 2K  is usc and compact-valued in 1 0( , ) { }K A   ; 
(ii) in 2 1 0( ( , ), ) { }K K A    , T  is usc and compact-valued. 
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Then 2S  is lsc at 0 0( , )  . 
Proof. 

We omit the proof since the technique is similar as that for Theorem 3.1 with 
suitable modifications.                                                                            �  

Next, we study the Hausdorff lower semicontinuity of  the exact  solution sets for 
the problems (MQIP 1) and (MQIP 2 ). 
Theorem 3.3. 

Impose the assumption of Theorem 3.1 and the following additional conditions: 
(iii) 2 0(., )K   is lsc in 1( , )K A   and 0( )E   is compact; 
(iv) in 2 1( ( , ), )K K A   , 0(., )T   is usc and compact-valued. 
Then 1S  is H-lsc at 0 0( , )  . 

Proof. 
We first prove that 2 0 0( , )S    is closed. Suppose to the contrary the existence of  

2 0 0( , )nx S   , 0nx x , such that 0 2 0 0( , )x S   , 0 2 0 0( , )y K x    and 0 0 0( , )z T y    
such that 

0 0 0 0, ( , , ) 0,z y x                                                                     (3.2) 
By the lower semicontinuity of 2 0(., )K   and 0(., )T   is lsc at 0x  and 0y , there 

exists 2 ( , )n n ny K x   and ( , )n n nz T y   such that 0ny y  and 0nz z . As 

2 0 0( , )nx S   , then we have 

0, ( , , ) 0,n n nz y x   Ž  (3.3) 
By the continuity of   and .,.  . So, since  (3.3) yields that 

0 0 0 0, ( , , ) 0,z y x  Ž    (3.4) 
we see a contradiction between (3.2) and (3.4). Thus, 1 0 0( , )S    is closed, and hence it 
is compact. Theorem 3.1 implies the lower semicontinuity of 1S . The Hausdoff lower 
semicontinuity of 1S  is direct from condition (ii) of Lemma 1.1.    �  

The following shows that the compactness of E  in Theorem 3.3 is essential. 
Example 3.3. 

Let 2
0, , [0,1], 0A B X Y         � � , 1 2, : 2AK K A , 

( , ): 2L X YT A  and : A A A    be defined by 
6 2

1 2 1 1 1 2( , ) ( , ) {( , )}, ( , ) ,K x K x x x x x x     �  
6 2( , , ) {2 cos ( )},y x      

6 41 sin ( )( , ) {2 }T y     . 
We have 2

2(0) { | 0}E x x  �  and 2 4
2 1( ) { | )}, (0,1]E x x x      � . 

We shows that the all assumptions of Theorem 3.3 are satisfied, but the 
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compactness of (0)E  is not satisfied. Direct computations give 
2

1 1 2 2(0,0) {( , ) | 0}S x x x  � and 2 6
1 2 1( , ) { | )}, (0,1]S x R x x         is not 

Hausdorff lower semicontinuous at (0,0) .  
Theorem 3.4.  

Impose the assumption of Theorem 3.2 and the following additional conditions: 
(iii) 2 0(., )K   is lsc in 1( , )K A   and 0( )E   is compact; 
(iv) in 2 1( ( , ), )K K A   , 0(., )T   is lsc. 

Then 1S  is H-lsc at 0 0( , )  . 
Remark 3.1. 

Theorem 3.2 extends  Theorem 4.1 in [6], Theorem 3.4  extends Corollary 4.1 in [6].  
Theorem 3.5.  

Suppose that all conditions in Theorems 2.1 and 3.1 (Theorems 3.3, respectively) 
are satisfied. Then, we have 1S  is both continuous (H-continuous, respectively) and 
closed at 0 0( , )  . 
Theorem 3.6.  

Suppose that all conditions in Theorems 2.2 and 3.2 (Theorems 3.4, respectively) 
are satisfied. Then, we have 2S  is both continuous (H-continuous, respectively) and 
closed at 0 0( , )  . 
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