ẢNH HƯỞNG CỦA NITƠ (NITRATE) LÊN SỰ TĂNG TRƯỞNG, HÀM LƯỢNG PROTEIN VÀ KHẢ NĂNG CHỐNG OXY HÓA CỦA SPIRULINA SP.

Võ Hồng Trung, Nguyễn Thị Hồng Phúc, Trần Đình Phương

Tóm tắt


 

Spirulina sp. là sản phẩm thiên nhiên có giá trị dinh dưỡng và sinh học cao, được sử dụng làm thức ăn, dược phẩm chữa bệnh. Điều kiện nuôi cấy là yếu tố quan trọng quyết định đến chất lượng sản phẩm từ Spirulina. Trong môi trường có nồng độ NaNO3 (5,0 g/L) cho sinh khối đạt (0,60 g/L) và hàm lượng protein (34,41%) cao hơn so với khối lượng sinh khối và hàm lượng protein được tạo ra khi nuôi cấy trong điều kiện nồng độ NaNO3 thấp (1,25 g/L và 2,5 g/L). Khả năng chống oxy hóa, tích lũy protein và thành phần acid min đều cao ở cả 2 chủng Spirulina sp. Mĩ và Nhật trong điều kiện nuôi cấy có nồng độ NaNO3 5,0 g/L. Ngoài ra, hàm lượng phenolic tổng và khả năng chống oxy của hai chủng Spirulina sp. này có mối tương quan dương với nhau.

 


Từ khóa


Spirulina sp.; phương pháp Bradford; nitrate; protein; acid amin; chống oxy hóa

Toàn văn:

PDF

Trích dẫn


Abd El Baky, H., & El baroty, G. (2016). Optimization of Growth Conditions for Purification and Production of L-Asparaginase by Spirulina maxima (Vol. 2016). Evidence-Based Complementary and Alternative Medicine: Hindawi Publishing Corporation.

Adb El Baky, H., K. El Baz, F., & El baroty, G. (2009). Production of phenolic compounds from Spirulina maxima microalgae and its protective effects in vitro toward hepatotoxicity model. African journal of pharmacy and pharmacology, 3(4), 133-139.

Albayrak, S., Aksoy, A., Sagdic, O., & Hamzaoglu, E. (2010). Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food chemistry, 119(1), 114-122. doi:https://doi.org/10.1016/j.foodchem.2009.06.003

Bartley, M. L., Boeing, W. J., Daniel, D., Dungan, B. N., & Schaub, T. (2016). Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. Journal of Applied Phycology, 28(1),

-24. doi:10.1007/s10811-015-0567-8

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72,, 248-254.

Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369. doi:https://doi.org/10.1016/j.rser.2012.11.030

Colla, L., Badiale-Furlong, E., & Costa, J. A. (2007). Antioxidant properties of Spirulina (Arthospira) platensis cultivated under different temperatures and nitrogen regimes. Brazilian Archives Of Biology And Technology, 50(1). doi:10.1590/S1516-89132007000100020

Delrue, F., Alaux, E., Moudjaoui, L., Gaignard, C., Fleury, G., Perilhou, A.,… & Sassi, J. F. (2017). Optimization of Arthrospira platensis (Spirulina) Growth: From Laboratory Scale to Pilot Scale. Fermentation, 3(4), 59.

Deng, R., & Chow, T. J. (2010). Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther, 28(4), e33-45. doi:10.1111/j.1755-5922.2010.00200.x

Esen, M., & ÜREK, R. Ö. (2014). Nitrate and iron nutrition effects on some nitrate assimilation enzymes and metabolites in Spirulina platensis. Turkish Journal of Biology, 38(5), 690-700.

Felig, P., Pozefsky, T., Marliss, E., & Cahill, G. F., Jr. (1970). Alanine: key role in gluconeogenesis. Science, 167(3920), 1003-1004.

Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24(6), 1477-1486.

Guillard RRL. (1973). Culture Methods and Growth Measurements. Chambridge: Chambridge University Pres.

Hajimahmoodi, M., Faramarzi, M. A., Mohammadi, N., Soltani, N., Oveisi, M. R., & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. Journal of Applied Phycology, 22(1), 43-50.

Ho, S. H., Ye, X., Hasunuma, T., Chang, J. S., & Kondo, A. (2014). Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review. Biotechnol Adv, 32(8), 1448-1459. doi:10.1016/j.biotechadv.2014.09.002

Ito, T., Tanaka, M., Shinkawa, H., Nakada, T., Ano, Y., Kurano, N.,… & Tomita, M. (2013). Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics, 9(1), 178-187. doi:10.1007/s11306-012-0463-z

Jonker, R., Engelen, M. P., & Deutz, N. E. (2012). Role of specific dietary amino acids in clinical conditions. Br J Nutr, 108 Suppl 2, S139-148. doi:10.1017/s0007114512002358

Kim, D. G., & Bum Hur, S. (2013). Growth and fatty acid composition of three heterotrophic Chlorella species. Algae, 28(1), 101-109. doi:10.4490/algae.2013.28.1.101

Konickova, R., Vankova, K., Vanikova, J., Vanova, K., Muchova, L., Subhanova, I.,…& Vitek, L. (2014). Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol, 13(2), 273-283.

Lim, S. N., Cheung, P. C., Ooi, V. E., & Ang, P. O. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem, 50(13),

-3866.

Levasseur M., Thompson P. A., & Harrison, P. J. (1993). Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol, 29(5), 587-595.

Miranda, M. S., Cintra, R. G., Barros, S. B., & Mancini Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res, 31(8), 1075-1079.

Norici, A., Dalsass, A., & Giordano, M. (2002). Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol Plant, 116(2), 186-191.

Pandey J. P., Tiwari A., & Mishra, R. M. (2010). Evaluation of Biomass Production of Spirulina maxima on Different Reported Media. J. Algal Biomass Utln., 1(3), 70-81.

Pinero Estrada, J. E., Bermejo Bescos, P., & Villar del Fresno, A. M. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco, 56(5-7), 497-500.

Pruvost, J., Van Vooren, G., Cogne, G., & Legrand, J. (2009). Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technology, 100(23), 5988-5995. doi:https://doi.org/10.1016/j.biortech.2009.06.004

Sahu, R., Kar, M., & Routray, R. (2013). DPPH Free radical scavenging activity of some leafy vegetables used by tribals of Odisha. India. Journal of Medicinal Plants Studies, 4(1), 21-27.

Schwartz J., G., S., & Suda D. Growth. (1988). Inhibition and destruction of oral cancer cells by extracts from spirulina. Cancer & Nutrition, 11(2), 127-134.

Sharoba, A. M. (2014). Nutritional value of spirulina and its use in the preparation of some complementary baby food formulas. Journal of Food and Dairy Sciences, Mansoura University, 8, 517-538.

Sukenik, A., Zmora, O., & Carmeli, Y. (1993). Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture, 117(3), 313-326. doi:https://doi.org/10.1016/0044-8486(93)90328-V

Thompson, G. A. (1996). Lipids and membrane function in green algae. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1302(1), 17-45. doi:https://doi.org/10.1016/0005-2760(96)00045-8

Tran, D., Doan, N., Louime, C., Giordano, M., & Portilla, S. (2014). Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World J Microbiol Biotechnol, 30(1), 317-322. doi:10.1007/s11274-013-1413-2

Uslu, L., Isik, O., Koç, K., & Göksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3), 386-389.

Wan, M.-X., Wang, R. M., Xia, J. L., Rosenberg, J. N., Nie, Z. Y., Kobayashi, N.,… & Betenbaugh, M. J. (2012). Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnology and Bioengineering, 109(8), 1958-1964. doi:10.1002/bit.24477

Yaltirak, T., Aslim, B., Ozturk, S., & Alli, H. (2009). Antimicrobial and antioxidant activities of Russula delica Fr. Food Chem Toxicol, 47(8), 2052-2056. doi:10.1016/j.fct.2009.05.029

Yen, H. W., Hu, I. C., Chen, C.Y., & Chang, J.S. (2014). Chapter 2 - Design of Photobioreactors for Algal Cultivation. In A. Pandey, D.J. Lee, Y. Chisti, & C. R. Soccol (Eds.), Biofuels from Algae (pp. 23-45). Amsterdam: Elsevier.

Zhu C. J., & Lee., K., Y. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9(2), 189-194.




DOI: https://doi.org/10.54607/hcmue.js.16.12.2568(2019)

Tình trạng

  • Danh sách trống