MỘT PHÂN TÍCH TRI THỨC LUẬN VỀ SỰ HÌNH THÀNH ĐỊNH NGHĨA GIỚI HẠN HÀM SỐ TẠI MỘT ĐIỂM CỦA WEIERSTRASS
Tóm tắt
Bài báo này trình bày một phân tích tri thức luận làm rõ quá trình hình thành định nghĩa giới hạn hàm số theo epsilon-delta của Weierstrass. Nghiên cứu phân tích nguồn gốc ra đời của khái niệm giới hạn và điều kiện hình thành định nghĩa giới hạn hàm số của Weierstrass qua các giai đoạn từ thời Cổ đại đến cuối thế kỉ XIV. Các kết quả nghiên cứu cho phép xác định được hai quan điểm toán học đã ảnh hưởng lên sự hình thành định nghĩa của Weierstrass, đó là nghiêm ngặt hóa và số học hóa giải tích; và một số chướng ngại tri thức luận gắn liền với định nghĩa của Weierstrass. Kết quả nghiên cứu góp phần làm sáng tỏ nguồn gốc tri thức luận của các khó khăn, sai lầm mà sinh viên ngành Sư phạm Toán học gặp phải khi tiếp cận định nghĩa giới hạn hàm số theo epsilon-delta của Weierstrass.
Từ khóa
Toàn văn:
PDFTrích dẫn
Adams, M. S. (2013). Students’ conceptual knowledge of limits in calculus: A two-part constructivist case study. Dissertation submitted to the faculty of The University of North Carolina at Charlotte.
Boyer, C. B. (1949). The history of calculus and its conceptual development. New York: Dover publications
Boyer, C. B. (1968). A history of mathematics. New York: John Wiley & Sons.
Boyer, C. B. (1969). The history of the calculus-an overview. Thirty First Yearbook. Washington D.C. National Council of Teachers of Mathematics.
Brousseau, G. (1983). Les obstacles epistemologiques et les problèmes en mathématiques. Recherches in Didactique des Mathematiques, 4(2), 165-198.
Burton, D. M. (2007). The History of Mathematics – An Introduction, 6th Ed., The McGraw Hill Companies, Inc.
Cornu, B. (1983). Apprentissage de la notion de limite: Conceptions et Obstacles. Doctoral Thesis, Grenoble.
Dunham, W. (2008). The calculus gallery: Masterpieces from Newton to Lebesque. New Jersey: Princeton University Press.
Edwards, C. (1979). The historical development of the calculus. New York: Springer Verlag.
Gauthier, Y. (2010). Toward an Arithmetical Logic: The Arithmetical Foudations of Logic. Birkhäuser.
Jahnke, H. N. (2016). A history of Analysis. American Mathematical Society.
Hollingdale, S. (1989). Makers of mathematics. London: Penguin Group.
Juter, K. (2005). Students' attitudes to mathematics and performance in limits of functions. Mathematics Education Research Journal, 17(2), 92-110.
Kline, M. (1972). Mathematical thought from ancient to modern times. New York: Oxford University Press.
Kleiner, I. (2001). History of the infinitely small and infinitely large in calculus.
Educational Studies in Mathematics, 48, 137-174.
Kleiner, I. (2012). Excursions in the History of Mathematics. Birkhäuser.
Lakorff, G. & Núñez, R. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. New York: Basic Books.
Le, T. B. T. T. (2011). Day va hoc khai niem gioi han ham so o truong pho thong [Teaching and learning concept of limit of function on secondary]. Journal of Science of Ho Chi Minh City University of Education, 27, 62-67.
Le, T. B. T. T. (2017). Cac tinh huong tranh luan khoa hoc xoay quanh mot so chuong ngai tri thuc luan cua khai niem gioi han [Situations of scientific controversies revolve around some epistemological obstacles of the concept of limits]. Actes du sixième colloque international en didactique desmathématiques. Ho Chi Minh City University of Education.
Le, T. B. T. T., & Pham, H. T. (2017). Day va hoc dinh nghia chinh xac ve gioi han cua ham so thong qua qua trinh mo hinh hoa toan hoc [Teaching and learning exact definition of limit of function through mathematical modelization]. Journal of Science of Can Tho University, 51, 1-6.
Nevalainen, L. A. (2002). LIMIT Highlights from over 2000 years of developments in calculus limits. Honor Thesis. Bemidji State University.
Petri B., & Schappacher N. (2007). On Arithmetization. In: Goldstein C., Schappacher N., Schwermer J. (eds) The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae. Springer, Berlin, Heidelberg.
Pinkus, A. (2000). Weierstrass and Approximation Theory. Journal of Approximation Theory 107, 1-66
Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18(4), 371-397.
Sinkevich, G. I. (2016). On the history of epsilontics. Antiquitates Mathematicae, 10, 183-204.
Stewart, J. (2016). Calculus. Eighth Ed., Cengage Learning.
Tall, D. O. (1981). Comments on the difficulty and validity of various approaches to the calculus. For the Learning of Mathematics, 2, 16-21.
Ueno, Y. (2003). "Kronecker’s idea of arithmetization of mathematics," Academic
reports, Fac. Eng. Tokyo Polytech. Univ, 26(1).
DOI: https://doi.org/10.54607/hcmue.js.19.2.3377(2022)
Tình trạng
- Danh sách trống