HAEMATOCOCCUS PLUVIALIS TRONG HỆ THỐNG TWIN–LAYER POROUS SUBSTRATE PHOTOBIOREACTOR PHƯƠNG NGHIÊNG: ẢNH HƯỞNG CỦA CÁC NGUỒN CARBON KHÁC NHAU ĐẾN SỰ SINH TRƯỞNG VÀ TÍCH LUỸ ASTAXANTHIN

Nguyễn Hồng Ngọc Bảo, Đỗ Thành Trí, Nguyễn Thành Công, Ong Bỉnh Nguyên, Trần Hoàng Dũng

Tóm tắt


Vi tảo được biết đến là một nguồn quan trọng sản xuất các hợp chất hữu cơ, ứng dụng vào nhiều lĩnh vực khác nhau. Việc nuôi cấy vi tảo chủ yếu sử dụng mô hình nuôi huyền phù, tiêu thụ nhiều nước và năng lượng, việc thu hoạch đòi hỏi nhiều chi phí và công lao động. Mô hình nuôi cấy tảo trên hệ thống Twin–layer photobioreactor có thể khắc phục những nhược điểm trên. Trong nghiên cứu này, hệ thống TL-PSBR nghiêng được sử dụng để nuôi cấy vi tảo Haematococcus pluvialis và thử nghiệm bổ sung nguồn carbon từ muối NaHCO3 hoặc muối CH3COONa ở các nồng độ khác nhau. Kết quả thử nghiệm cho thấy muối CH3COONa nồng độ 35 mM bổ sung vào môi trường nuôi cấy vi tảo H. pluvialis cho hiệu quả cao. Lượng sinh khối khô thu được trên hệ thống đạt 94,78 g m-2, lượng astaxanthin tích lũy đạt 1275,03 mg m-2 chỉ sau 10 ngày nuôi. Các kết quả này cao hơn rất nhiều so với khi chỉ sử dụng khí CO2 (SKK tăng 1,91 lần; lượng astaxanthin gấp 3,32 lần, tỉ lệ astaxanthin tích lũy trong sinh khối hơn 1,75 lần). Kết quả đưa đến khả năng sử dụng CH3COONa vào nuôi cấy vi tảo trên hệ thống TL-PSBR nghiêng, sản xuất astaxanthin.

 


Từ khóa


Astaxanthin; carbon source; Haematococcus pluvialis; porous substrate; twin-layer, photobioreactor

Toàn văn:

PDF

Trích dẫn


Berner, F., Heimann, K., & Sheehan, M. (2015). Microalgal biofilms for biomass production. Journal of Applied Phycology, 27(5), 1793-1804. https://doi.org/10.1007/s10811-014-0489-x

Cifuentes, A. S., González, M. A., Vargas, S., Hoeneisen, M., & González, N. (2003). Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biological Research, 36(3-4),

-357. https://doi.org/10.4067/S0716-97602003000300006

Devgoswami, C., Kalita, M., Talukdar, J., Bora, R., & Sharma, P. (2011). Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African Journal of Biotechnology, 10(61), 13128-13138. https://doi.org/10.5897/AJB11.888

Do, T.-T., Ong, B.-N., Nguyen Tran, M.-L., Nguyen, D., Melkonian, M., & Tran, H.-D. (2019). Biomass and Astaxanthin Productivities of Haematococcus pluvialis in an Angled Twin-Layer Porous Substrate Photobioreactor: Effect of Inoculum Density and Storage Time. Biology, 8(3), 68. https://doi.org/10.3390/biology8030068

Emma Huertas, I., Colman, B., Espie, G. S., & Lubian, L. M. (2000). Active transport of CO2 by three species of marine microalgae. In Journal of Phycology (Vol. 36, Issue 2, pp. 314-320). https://doi.org/10.1046/j.1529-8817.2000.99142.x

Göksan, T. (2010). An Alternative Approach to the Traditional Mixotrophic Cultures of Haematococcus pluvialis Flotow (Chlorophyceae). Journal of Microbiology and Biotechnology, 20(9), 1276-1282. https://doi.org/10.4014/jmb.0909.09005

Gross, M., Jarboe, D., & Wen, Z. (2015). Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol, 99(14), 5781-5789. https://doi.org/10.1007/s00253-015-6736-5

Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H., & Tanaka, H. (2001). Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology, 13(5), 395-402. https://doi.org/10.1023/A:1011921329568

Jeon, Y.-C., Cho, C.-W., & Yun, Y.-S. (2006). Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme and Microbial Technology, 39(3), 490-495. https://doi.org/10.1016/j.enzmictec.2005.12.021

Kakizono, T., Kobayashi, M., & Nagai, S. (1992). Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. Researchgate.Net, 74(6), 403-405. https://doi.org/https://doi.org/10.1016/0922-338X(92)90041-R

Kang, C. D., Lee, J. S., Park, T. H., & Sim, S. J. (2005). Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol, 68(2), 237-241. https://doi.org/10.1007/s00253-005-1889-2

Kiperstok, A. C., Melkonian, P. D. M., & Becker, P. D. B. (2016). Optimizing immobilized cultivation of Haematococcus pluvialis for astaxanthin production [Universität zu Köln.]. In Faculty of Mathematics and Natural Sciences-Botanical Institute: Vol. PhD. https://kups.ub.uni-koeln.de/6728/

Kobayashi, M., Kakizono, T., & Nagai, S. (1993). Enhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis. Applied and Environmental Microbiology, 59(3), 867-873. https://doi.org/10.1128/aem.59.3.867-873.1993

Li, T., Strous, M., & Melkonian, M. (2017). Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS Microbiology Letters, 364(24). https://doi.org/10.1093/femsle/fnx218

Luu, T. T. (2017). Study on biological characteristics and astaxanthin rich biomass production of microalga Haematococcus pluvialis Flotow to applications for aquaculture. Doctoral thesis in Biology, Institute of Biotechnology.

Merrett, M. J., Nimer, N. A., & Dong, L. F. (1996). The utilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant, Cell and Environment, 19(4), 478-484. https://doi.org/10.1111/j.1365-3040.1996.tb00340.x

Naumann, T., Çebi, Z., Podola, B., & Melkonian, M. (2013). Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. Journal of Applied Phycology, 25(5), 1413-1420. https://doi.org/10.1007/s10811-012-9962-6

Nowack, E. C. M., Podola, B., & Melkonian, M. (2005). The 96-Well Twin-Layer System: A Novel Approach in the Cultivation of Microalgae. Protist, 156(2), 239-251. https://doi.org/https://doi.org/10.1016/j.protis.2005.04.003

Orosa, M., Franqueira, D., Cid, A., & Abalde, J. (2001). Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology Letters, 23(5), 373-378. https://doi.org/10.1023/A:1005624005229

Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Arumugam, K., Ariff, A. Bin, Sulaiman, A. Z., & Mohamed, M. S. (2021). A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules, 11(2), 256. https://doi.org/10.3390/biom11020256

Ozkan, A., Kinney, K., Katz, L., & Berberoglu, H. (2012). Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol, 114, 542-548. https://doi.org/10.1016/j.biortech.2012.03.055

Pan-utai, W., Parakulsuksatid, P., & Phomkaivon, N. (2017). Effect of inducing agents on growth and astaxanthin production in Haematococcus pluvialis: Organic and inorganic. Biocatalysis and Agricultural Biotechnology, 12, 152-158.

Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas | Request PDF. (n.d.). Retrieved July 31, 2021, from https://www.researchgate.net/publication/256840858_Studies_on_the_growth_behavior_of_Chlorella_Haematococcus_and_Scenedesmus_sp_in_culture_media_with_different_concentrations_of_sodium_bicarbonate_and_carbon_dioxide_gas

Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., & Masojídek, J. (2003). Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. Journal of Applied Phycology, 15(2), 127-136. https://doi.org/10.1023/a:1023854904163

Tran, H. D., Do, T. T., Le, T. L., Tran-Nguyen, M. L., Pham, C. H., & Melkonian, M. (2019). Cultivation of Haematococcus pluvialis for astaxanthin production on angled bench-scale and large-scale biofilm-based photobioreactors. Vietnam Journal of Science, Technology and Engineering, 61, 61-70.

Tripathi, U., Sarada, R., & Ravishankar, G. A. (2002). Effect of culture conditions on growth of green alga — Haematococcus pluvialis and astaxanthin production. Acta Physiologiae Plantarum, 24(3), 323-329. https://doi.org/10.1007/s11738-002-0058-9

Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., Wang, W., Pan, R., Wang, J., & Li, S. (2014). The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour Technol, 163, 26-32. https://doi.org/10.1016/j.biortech.2014.04.017

Wan, M., Zhang, J., Hou, D., Fan, J., Li, Y., Huang, J., & Wang, J. (2014). The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation. Bioresour Technol, 167, 276–-. https://doi.org/10.1016/j.biortech.2014.06.030

Wan, M., Zhang, Z., Wang, J., Huang, J., Fan, J., Yu, A., Wang, W., & Li, Y. (2015). Sequential Heterotrophy–Dilution–Photoinduction Cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresource Technology, 198, 557-563. https://doi.org/10.1016/j.biortech.2015.09.031

Yin, S., Wang, J., Chen, L., & Liu, T. (2015). The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate. Biotechnol Lett, 37(9), 1819-1827. https://doi.org/10.1007/s10529-015-1864-7

Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J., & Li, Y. G. (2009). Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture, 295(3), 275-281. https://doi.org/https://doi.org/10.1016/j.aquaculture.2009.06.043

Zhang, W., Wang, J., Wang, J., & Liu, T. (2014). Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol, 158, 329-335. https://doi.org/10.1016/j.biortech.2014.02.044




DOI: https://doi.org/10.54607/hcmue.js.19.11.3488(2022)

Tình trạng

  • Danh sách trống