MÀNG COMPOSITE BÁN TRONG SUỐT TỔNG HỢP TỪ VI SỢI CELLULOSE CÓ NGUỒN GỐC RƠM RẠ NGHIỀN NHỎ VÀ ỨNG DỤNG TRONG KIỂM SOÁT ÁNH SÁNG

Trần Văn Khuê, Lê Văn Thuận, Nguyễn Minh Hiệp, Đặng Ngọc Sỹ, Đoàn Minh Thu, Lê Hoàng Sinh

Tóm tắt


 

            Màng composite bán trong suốt từ cellulose và chitosan (MFC/CS) được nghiền nhỏ dựa trên rơm rạ đã được chứng minh là một vật liệu kiểm soát sự truyền qua của ánh sáng mở ra hướng ứng dụng đầy hứa hẹn trong các kĩ thuật quang học thế hệ tiếp theo. Trong bài báo này, một phương pháp xanh tổng hợp MFC được bao phủ bởi lignin đã được phát triển thành công, trong đó MFC lần đầu tiên được chiết xuất bằng cách sử dụng dung dịch natri hydroxit loãng trên thiết bị đồng hóa ở tốc độ 5000 vòng/phút. Lignin hòa tan sau đó được lắng đọng trên bề mặt MFC sau khi trung hòa natri hydroxit bằng dung dịch axit clohydric loãng. MFCs thu được có đường kính từ 2-5 μm và chiều dài lên đến 200 μm. Lignin được khử màu bằng cách loại bỏ các nhóm mang màu của nó (chromophore groups) bằng axit peracetic với hỗn hợp hydro peroxit và axit axetic ở tỉ lệ thể tích 4: 1. Màng MFC cho thấy độ trong suốt cao và hiệu ứng phân tán ánh sáng tuyệt vời với tỉ lệ trọng lượng MFC/CS là 1: 3 và 1: 1.

 


Từ khóa


phương pháp xanh; kiểm soát ánh sáng; vi sợi cellulose, rơm rạ

Toàn văn:

PDF (English)

Trích dẫn


Abuelnuor, A. A. A., Omara, A. A. M., Saqr, K. M., & Elhag, I. H. I. (2018). Improving indoor thermal comfort by using phase change materials: A review. International Journal of Energy Research, 42(6), 2084-2103. https://doi.org/10.1002/er.4000

Ascione, F., Bianco, N., Iovane, T., Mastellone, M., & Mauro, G. M. (2021). The evolution of building energy retrofit via double-skin and responsive façades: A review. Solar Energy, 224(June), 703–717. https://doi.org/10.1016/j.solener.2021.06.035

Breyer, C. (2020). A Global Overview of Future Energy. In Future Energy (pp. 727-756). Elsevier. https://doi.org/10.1016/B978-0-08-102886-5.00034-7

Djafari Petroudy, S. R., Rahmani, N., Rasooly Garmaroody, E., Rudi, H., & Ramezani, O. (2019). Comparative study of cellulose and lignocellulose nanopapers prepared from hardwood pulps: Morphological, structural and barrier properties. International Journal of Biological Macromolecules, 135, 512-520. https://doi.org/10.1016/j.ijbiomac.2019.05.212

Dong, Y., Tan, Y., Wang, K., Cai, Y., Li, J., Sonne, C., & Li, C. (2022). Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Research, 223, 119011. https://doi.org/10.1016/J.WATRES.2022.119011

Eh, A. L. S. S., Tan, A. W. M., Cheng, X., Magdassi, S., & Lee, P. S. (2018). Recent Advances in Flexible Electrochromic Devices: Prerequisites, Challenges, and Prospects. Energy Technology, 6(1), 33-45. https://doi.org/10.1002/ente.201700705

Eyl-Mazzega, M.A., & Mathieu, C. (2020). The European Union and the Energy Transition. In Lecture Notes in Energy (Vol. 73, pp. 27-46). https://doi.org/10.1007/978-3-030-39066-2_2

Fang, Z., Li, G., Hou, G., & Qiu, X. (2023). Light Management of Nanocellulose Films. 179-209. https://doi.org/10.1007/978-3-031-14043-3_6

Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C, 32(1), 12-17. https://doi.org/10.1016/j.msec.2011.08.018

Jiang, Y., Liu, X., Yang, Q., Song, X., Qin, C., Wang, S., & Li, K. (2019). Effects of residual lignin on composition, structure, and properties of mechanically defibrillated cellulose fibrils and films. Cellulose, 26(3), 1577-1593. https://doi.org/10.1007/s10570-018-02229-4

Jiang, Y., Wang, Z., Liu, X., Yang, Q., Huang, Q., Wang, L., Dai, Y., Qin, C., & Wang, S. (2020). Highly Transparent, UV-Shielding, and Water-Resistant Lignocellulose Nanopaper from Agro-Industrial Waste for Green Optoelectronics. ACS Sustainable Chemistry & Engineering, 8(47), 17508-17519. https://doi.org/10.1021/acssuschemeng.0c06752

Jiang, Y., Wang, Z., Zhou, L., Jiang, S., Liu, X., Zhao, H., Huang, Q., Wang, L., Chen, G., & Wang, S. (2022). Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications. International Journal of Biological Macromolecules, 206(January), 264-276. https://doi.org/10.1016/j.ijbiomac.2022.02.147

Lee, J., & Yang, J.-S. (2019). Global energy transitions and political systems. Renewable and Sustainable Energy Reviews, 115(August), 109370. https://doi.org/10.1016/j.rser.2019.109370

Li, T., Chen, C., Brozena, A. H., Zhu, J. Y., Xu, L., Driemeier, C., Dai, J., Rojas, O. J., Isogai, A., Wågberg, L., & Hu, L. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature, 590(7844), 47-56. https://doi.org/10.1038/s41586-020-03167-7

Lizundia, E., Sipponen, M. H., Greca, L. G., Balakshin, M., Tardy, B. L., Rojas, O. J., & Puglia, D. (2021). Multifunctional lignin-based nanocomposites and nanohybrids. Green Chemistry, 23(18), 6698-6760. https://doi.org/10.1039/D1GC01684A

Lucas, M., & Peres, J. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3), 236-244. https://doi.org/10.1016/j.dyepig.2005.07.007

Mariano-Hernández, D., Hernández-Callejo, L., Zorita-Lamadrid, A., Duque-Pérez, O., & Santos García, F. (2021). A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. Journal of Building Engineering, 33, 101692. https://doi.org/10.1016/j.jobe.2020.101692

Mi, R., Chen, C., Keplinger, T., Pei, Y., He, S., Liu, D., Li, J., Dai, J., Hitz, E., Yang, B., Burgert, I., & Hu, L. (2020). Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 11(1), 3836. https://doi.org/10.1038/s41467-020-17513-w

Mohelnikova, J. (2011). Nanocoatings for architectural glass. In Nanocoatings and Ultra-Thin Films (pp. 182-202). Elsevier. https://doi.org/10.1533/9780857094902.2.182

Oliaei, E., Lindén, P. A., Wu, Q., Berthold, F., Berglund, L., & Lindström, T. (2020). Microfibrillated lignocellulose (MFLC) and nanopaper films from unbleached kraft softwood pulp. Cellulose, 27(4), 2325-2341. https://doi.org/10.1007/s10570-019-02934-8

Park, S.-Y., Choi, J. H., Kim, J.-H., Cho, S. M., Yeon, S., Jeong, H., Lee, S. M., & Choi, I. G. (2020). Peracetic acid-induced kraft lignin solubilization and its characterization for selective production of macromolecular biopolymers. International Journal of Biological Macromolecules, 161, 1240–1246. https://doi.org/10.1016/j.ijbiomac.2020.06.041

Pereira, J., Glória Gomes, M., Moret Rodrigues, A., & Almeida, M. (2019). Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making. Energy and Buildings, 198, 431-443. https://doi.org/10.1016/j.enbuild.2019.06.003

Pereira, J., Teixeira, H., Gomes, M. da G., & Moret Rodrigues, A. (2022). Performance of Solar Control Films on Building Glazing: A Literature Review. Applied Sciences, 12(12), 5923. https://doi.org/10.3390/app12125923

Qiu, X., Yu, J., Yang, D., Wang, J., Mo, W., & Qian, Y. (2018). Whitening Sulfonated Alkali Lignin via H 2 O 2 /UV Radiation and Its Application As Dye Dispersant. ACS Sustainable Chemistry & Engineering, 6(1), 1055-1060. https://doi.org/10.1021/acssuschemeng.7b03369

Rashidi, S., Esfahani, J. A., & Karimi, N. (2018). Porous materials in building energy technologies—A review of the applications, modelling and experiments. Renewable and Sustainable Energy Reviews, 91(September 2017), 229-247. https://doi.org/10.1016/j.rser.2018.03.092

Sanandiya, N. D., Vijay, Y., Dimopoulou, M., Dritsas, S., & Fernandez, J. G. (2018). Large-scale additive manufacturing with bioinspired cellulosic materials. Scientific Reports, 8(1), 8642. https://doi.org/10.1038/s41598-018-26985-2

Song, M., Niu, F., Mao, N., Hu, Y., & Deng, S. (2018). Review on building energy performance improvement using phase change materials. Energy and Buildings, 158, 776-793. https://doi.org/10.1016/j.enbuild.2017.10.066

Sun, J., Schütz, U., Tu, K., Koch, S. M., Roman, G., Stucki, S., Chen, F., Ding, Y., Yan, W., Wu, C., Stricker, L., Burgert, I., Wang, Z. L., Hegemann, D., & Panzarasa, G. (2022). Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy, 102, 107670. https://doi.org/10.1016/J.NANOEN.2022.107670

Sun, Y., Wilson, R., & Wu, Y. (2018). A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort. Applied Energy, 226(May), 713-729. https://doi.org/10.1016/j.apenergy.2018.05.094

Tällberg, R., Jelle, B. P., Loonen, R., Gao, T., & Hamdy, M. (2019). Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Solar Energy Materials and Solar Cells, 200(June 2018), 109828. https://doi.org/10.1016/j.solmat.2019.02.041

Wang, J., Deng, Y., Qian, Y., Qiu, X., Ren, Y., & Yang, D. (2016). Reduction of lignin color via one-step UV irradiation. Green Chemistry, 18(3), 695-699. https://doi.org/10.1039/C5GC02180D

Wang, K., Liu, X., Dong, Y., Ling, Z., Cai, Y., Tian, D., Fang, Z., & Li, J. (2022). Editable shape-memory transparent wood based on epoxy-based dynamic covalent polymer with excellent optical and thermal management for smart building materials. Cellulose, 29(14), 7955-7972. https://doi.org/10.1007/S10570-022-04754-9/TABLES/1

Wang, K., Peng, H., Gu, Q., Zhang, X., Liu, X., Dong, Y., Cai, Y., Li, Y., & Li, J. (2023). Scalable, large-size, and flexible transparent bamboo. Chemical Engineering Journal, 451, 138349. https://doi.org/10.1016/J.CEJ.2022.138349

Wang, K., Zhang, T., Li, C., Xiao, X., Tang, Y., Fang, X., Peng, H., Liu, X., Dong, Y., Cai, Y., Tian, D., Li, Y., & Li, J. (2022). Shape-reconfigurable transparent wood based on solid-state plasticity of polythiourethane for smart building materials with tunable light guiding, energy saving, and fire alarm actuating functions. Composites Part B: Engineering, 246, 110260. https://doi.org/10.1016/J.COMPOSITESB.2022.110260

Wang, Y., Uetani, K., Liu, S., Zhang, X., Wang, Y., Lu, P., Wei, T., Fan, Z., Shen, J., Yu, H., Li, S., Zhang, Q., Li, Q., Fan, J., Yang, N., Wang, Q., Liu, Y., Cao, J., Li, J., & Chen, W. (2017). Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat, 3(2), 98-108. https://doi.org/10.1002/cnma.201600266

Wang, Z., Wang, X., Cong, S., Geng, F., & Zhao, Z. (2020). Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Materials Science and Engineering: R: Reports, 140(2020), 100524. https://doi.org/10.1016/j.mser.2019.100524

Xia, Q., Chen, C., Li, T., He, S., Gao, J., Wang, X., & Hu, L. (2021). Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 7(5), 1-9. https://doi.org/10.1126/sciadv.abd7342

Xia, Q., Chen, C., Yao, Y., Li, J., He, S., Zhou, Y., Li, T., Pan, X., Yao, Y., & Hu, L. (2021). A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 4(7), 627-635. https://doi.org/10.1038/s41893-021-00702-w

Yang, X., Abe, K., Yano, H., & Wang, L. (2022). Multifunctional cellulosic materials prepared by a reactive DES based zero-waste system. Nano Letters, 22(15), 6128-6134. https://doi.org/10.1021/ACS.NANOLETT.2C01303/SUPPL_FILE/NL2C01303_SI_002.PDF

Zhang, Y., Wei, Y., Qian, Y., Zhang, M., Zhu, P., & Chen, G. (2020). Lignocellulose enabled highly transparent nanopaper with tunable ultraviolet-blocking performance and superior durability. ACS Sustainable Chemistry and Engineering, 8(46), 17033-17041. https://doi.org/10.1021/acssuschemeng.0c04145

Zhang, Y., Yang, S., Tang, H., Wan, S., Qin, W., Zeng, Q., Huang, J., Yu, G., Feng, Y., & Li, J. (2022). Depletion stabilization of emulsions based on bacterial cellulose/carboxymethyl chitosan complexes. Carbohydrate Polymers, 297(July), 119904. https://doi.org/10.1016/j.carbpol.2022.119904

Zhao, D., Zhu, Y., Cheng, W., Chen, W., Wu, Y., & Yu, H. (2021). Cellulose‐Based Flexible Functional Materials for Emerging Intelligent Electronics. Advanced Materials, 33(28), 2000619. https://doi.org/10.1002/adma.202000619




DOI: https://doi.org/10.54607/hcmue.js.20.3.3612(2023)

Tình trạng