ĐÁNH GIÁ CHÍNH QUY CHO TOÁN TỬ LOẠI SCHRODINGER
Tóm tắt
Từ khóa
Toàn văn:
PDFTrích dẫn
Bongioanni, B., Harboure, E., & Salinas, O. (2011). Classes of weights related to Schrodinger operator. J. Math. Anal. Appl, 373, 563-579.
Bongioanni, B., Harboure, E., & Salinas, O. (2011). Commutators of Riesz transforms related to Schrödinger operators. J. Fourier Anal, 17, 115-134.
Bui, T. A. (2020). Regularity Estimates for Nondivergence Parabolic Equations on Generalized Orlicz Spaces. International Mathematics Research Notices, 2021(14), 11103-11139.
Bramanti, M., & Brandolini, L., & Harboure, E., & Viviani, B. (2012). Global estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition. Ann. Mat., 191, 339-362.
Bramanti, M., & Cerutti, M. (1993). solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients. Comm. Partial Differential Equations, 18, 1735-1763.
Brezis, H. (2010). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York.
Byun, S. (2004). Elliptic equations with BMO coefficients in Lipschitz domains. Trans. Amer. Math. Soc., 357, 1025-1046.
Caffarelli, L., & Peral, I. (1998). On estimates for elliptic equations in divergence form. Comm. Pure Appl. Math., 51, 1-21.
Chiarenza, F., & Frasca, M., & Longo, P. (1991). estimates for nondivergence form elliptic equations with discontinuous coefficients. Ric. Mat., 40, 149-168.
Chiarenza, F., & Frasca, M., & Longo, P. (1993). solvability of the Dirichlet problem for nondivergence form elliptic equations with VMO coefficients. Trans. Amer. Math. Soc., 336, 841-853.
Fefferman, C. (1983). The uncertainty principle. Bull. Amer. Math. Soc., 9(2), 129-206.
García-Cuerva, J., & Rubio de Francia, J. (1985). Weighted Norm Inequalities and Related Topics. NorthHolland, Amsterdam–New York.
Gilbarg, D., & Trudinger, N. (1983). Elliptic Partial Differential Equations of Second Order (2nd ed.). Springer Verlag, Berlin.
Guixia Pan & Lin Tang (2016). Solvability for Schrodinger equations with discontinuous coefficients.
John, F., & Nirenberg, L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math., 4.
Kurata, K., & Sugano, S. (2000). Estimate of the fundamental solution for magnetic Schrodinger operators and their applications. Tohoku Math. J., 52.
Le, X. T., & Tran, T. D., & Nguyen, N. T., & Nguyen, T. T. (2020). Global Orlicz estimates for non-divergence elliptic operators with potentials satisfying a reverse Holder condition. Journal of Mathematical Analysis and Applications, 491(2), 124-352.
Okazawa, N. (1984). An theory for Schrodinger operators with nonnegative potentials. J. Math. Soc. Japan.
Pradolini, G., & Salinas (2007). Commutators of singular integrals on spaces of homogeneous type. Czechoslov. Math. J., 57(1), 75-93.
Sarason, D. (1975). Functions of vanishing mean oscillation. Trans. Amer. Math. Soc.
Shen, Z. (1994). On the Neumann problem for Schodinger operators in Lipschitz domains. Indiana Univ. Math. J., 453.
Shen, Z. (1995). estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Greno-ble), 45, 513-546.
Shen, Z. (1996). Estimates in for magnetic Schrodinger operators. Indiana Univ. Math. J., 45.
Stein, E. M. (1993). Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton, NJ.
Zhong, J. (1993). Harmonic analysis for some Schrodinger type operators.
Ph.D. thesis, Princeton University.
DOI: https://doi.org/10.54607/hcmue.js.20.4.3638(2023)
Tình trạng
- Danh sách trống