SỰ TÍCH LŨY CAROTENOID VÀ LIPID CỦA VI TẢO DUNALIELLA BARDAWIL DCCBC 15 NUÔI CẤY Ở ĐIỀU KIỆN ỨC CHẾ NỒNG ĐỘ MUỐI CAO
Tóm tắt
Vi tảo lục đơn bào chịu mặn Dunaliella bardawil (D. salina var bardawil) là nguồn cung cấp β-caroten tự nhiên, hàm lượng β-caroten đạt đến 14% trọng lượng khô trong điều kiện nuôi cấy bất lợi như cạn kiệt dinh dưỡng, độ muối cao, ánh sáng cao. Nghiên cứu này nhằm đánh giá khả năng tích lũy carotenoid và lipid của vi tảo Dunaliella bardawil DCCBC 15 ở các điều kiện cạn kiệt dinh dưỡng, độ muối 3M và 4,5M trên môi trường MD4. Kết quả cho thấy, hàm lượng carotenoid của
D. bardawil nuôi cấy ở điều kiện cạn kiệt dinh dưỡng (14,890 pg/tb) và tỉ lệ car/dlt (7,966) cao hơn các điều kiện ức chế độ muối 3,0M (12,710 pg/tb và 7,269) và 4,5M (11,526 pg/tb và 7,258) (p<0,05). Tương tự, sự tích lũy lipid của D. bardawil ở điều kiện cạn kiệt dinh dưỡng (145,946 pg/tb) và tỉ lệ lipid/dlt (77,964) cao hơn so với đièu kiện muối 3M (122,038 pg/tb và 71,376) và 4,5M (122,963 pg/tb và 77,612). Như vậy, điều kiện nuôi cấy cạn kiệt dinh dưỡng là một chiến lược nuôi cấy D. bardawil để thu nhận sinh khối có hàm lượng carotenoid và lipid cao.
Từ khóa
Toàn văn:
PDFTrích dẫn
Ahmed, R. A., He, M., Aftab, R. A., Zheng, S., Nagi, M., Bakri, R., & Wang, C. (2017). Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific reports, 7(1), 1-10.
Ben‐Amotz, A., Katz, A., & Avron, M. (1982). Accumulation of β‐carotene in halotolerant alge: purification and characterization of β‐carotene‐rich globules from Dunaliella bardawil (Chlorophyceae) 1. Journal of Phycology, 18(4), 529-537.
BenMoussa-Dahmen, I., Chtourou, H., Rezgui, F., Sayadi, S., & Dhouib, A. (2016). Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production. Bioresource technology, 218, 816-825.
Borowitzka, M., & Borowitzka, L. (1988). Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Elsevier Applied Science.
Byrd, S. M., Burkholder, J. M., & Zimba, P. V. (2017). Environmental stressors and lipid production by Dunaliella spp. I. Salinity. Journal of Experimental Marine Biology and Ecology, 487, 18-32.
Chavoshi, Z. Z., & Shariati, M. (2019). Lipid production in Dunaliella bardawil under autotrophic, heterotrophic and mixotrophic conditions. Brazilian Journal of Oceanography, 67.
Farhat, N., Rabhi, M., Falleh, H., Jouini, J., Abdelly, C., & Smaoui, A. (2011). Optimization of salt concentrations for a higher carotenoid production in dunaliella salina (chlorophyceae) 1. Journal of Phycology, 47(5), 1072-1077.
Gómez, P. I., Barriga, A., Cifuentes, A. S., & González, M. A. (2003). Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biological Research, 36(2), 185-192.
Goswami, R. K., Agrawal, K., & Verma, P. (2021). Microalgae Dunaliella as biofuel feedstock and β-carotene production: An influential step towards environmental sustainability. Energy Conversion and Management: X, 100154.
Guillard, R. R., & Sieracki, M. S. (2005). Counting cells in cultures with the light microscope. Algal culturing techniques, 239-252.
Haghjou, M. M., & Shariati, M. (2007). Photosynthesis and respiration under low temperature stress in two Dunaliella strains. World Applied Sciences Journal, 2(4), 276-282.
Haghjou, M. M., Shariati, M., & Smirnoff, N. (2009). The effect of acute high light and low temperature stresses on the ascorbate–glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiologia Plantarum, 135(3), 272-280.
Hosseini Tafreshi, A., & Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of applied microbiology, 107(1), 14-35.
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Portland Press Ltd.
Marín, N., Morales, F., Lodeiros, C., & Tamigneaux, E. (1998). Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities. Journal of applied phycology, 10(4), 405-411.
Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J.-W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource technology, 155, 330-333.
Nguyen, T. H. T., & Ngo, D. N.. (2014). Phân lập vi tảo dunaliella salina NT6 tại Khánh Hòa và nghiên cứu các điều kiện sinh trưởng và tổng hợp?-caroten của tảo. [Isolation microalgae Dunaliella salina NT6 in Khanh Hoa province and studying factors affecting the growth and β-carotene production] Can Tho University Journal of Science, 1, 218-228.
Paniagua-Michel, J., Olmos-Soto, J., & Ruiz, M. A. (2012). Pathways of carotenoid biosynthesis in bacteria and microalgae. Microbial carotenoids from bacteria and microalgae, 1-12.
Park, J., Jeong, H. J., Yoon, E. Y., & Moon, S. J. (2016). Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method. Algae, 31(4), 391-401.
Prieto, A., Cañavate, J. P., & García-González, M. (2011). Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of biotechnology, 151(2), 180-185.
Rad, F. A., Aksoz, N., & Hejazi, M. A. (2011). Effect of salinity on cell growth and β-carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Iran. African Journal of Biotechnology, 10(12), 2282-2289.
Ramos, A. A., Polle, J., Tran, D., Cushman, J. C., Jin, E.-S., & Varela, J. C. (2011). The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Algae, 26(1), 3-20.
Ravishankar, G. A., & Rao, A. R. (2019). Handbook of Algal Technologies and Phytochemicals: Two Volume Set: CRC Press.
Shaish, A., Ben-Amotz, A., & Avron, M. (1992). [41] Biosynthesis of β-carotene in Dunaliella. In Methods in enzymology (Vol. 213, pp. 439-444): Elsevier.
Shete, V., & Quadro, L. (2013). Mammalian metabolism of β-carotene: gaps in knowledge. Nutrients, 5(12), 4849-4868.
Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment, 81(2-3), 337-354.
Tran, D., Doan, N., Louime, C., Giordano, M., & Portilla, S. (2014). Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World Journal of Microbiology and Biotechnology, 30(1), 317-322.
Vo, T., Mai, T., Vu, H., Van, D., Dao, H., Tran, P., . . . Nguyen, N. C. (2017). Effect of osmotic stress and nutrient starvation on the growth, carotenoid and lipid accumulation in Dunaliella salina A9. A9, Research in Plant Sciences, 5(1), 1-8.
Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B., & Cetiner, S. (2014). Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PloS one, 9(3), e91957.
DOI: https://doi.org/10.54607/hcmue.js.20.4.3642(2023)
Tình trạng
- Danh sách trống