ẢNH HƯỞNG CỦA GIBBERELLIC ACID LÊN SỰ SINH TRƯỞNG CỦA GIỐNG LÚA ST25 (Oryza sativa L.) TRONG ĐIỀU KIỆN STRESS HẠN IN VITRO
Tóm tắt
Lúa là một trong các loại cây lương thực phổ biến nhất trên thế giới, đặc biệt ở khu vực châu Á. Trong đó, giống Lúa gạo thơm Sóc Trăng ST25 là giống Lúa đạt danh hiệu “Gạo ngon nhất thế giới”. Hiện nay, tình hình hạn hán đã và đang trở thành mối đe dọa lớn đối với người nông dân trên toàn cầu. Nghiên cứu tiến hành khảo sát ảnh hưởng của gibberellic acid ở các nồng độ khác nhau (0; 0,1; 0,3 và 0,5 mg/L) lên một số chỉ tiêu (sinh trưởng, sinh lí, sinh hóa) của giống Lúa ST25 trong điều kiện stress hạn trong điều kiện nuôi cấy in vitro. Kết quả cho thấy, môi trường nuôi cấy có bổ sung gibberellic acid làm cải thiện quá trình nảy mầm và sinh trưởng của giống Lúa ST25. Trong đó, môi trường nuôi cấy có bổ sung gibberellic acid 0,3 mg/L cải thiện tỉ lệ nảy mầm và khả năng sinh trưởng của cây Lúa tốt nhất.
Từ khóa
Toàn văn:
PDFTrích dẫn
Bohnert, H. J. & Jensen, R. G. (1996). Strategies for enginerring water-stress tolerance in plants. Trends in biotechnology, 14(3), 89-97.
Bohrani, M., & Habili, N. (1992). Physiology of plants and their cells (pp.20-34). Translation. Chamran University publication.
Bui, T. V. (2002). Sinh ly thuc vat dai cuong, phan II: phat trien [Plant physiology, Part II: Development], Ho Chi Minh City National University Publishing House.
Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F., & Khan, F. A. (2016). Proline Accumulation in Plants: Roles in Stress Tolerance and Plant Development. In N. Iqbal, R. Nazar, & N. A. Khan (Eds.), Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies (pp. 155-166). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_9
Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt tolerance mechanisms. Trends in plant science, 19(6), 371-379.
Efisue, A. A. (2006). Studies of drought tolerance in interspecific progenies of Oryza glaberrima (Steud) and O. Sativa (L) and an appraisal of the use of male gametocides in rice hybridisation (Doctoral dissertation).
Eisvand, H. R., Tavakkol-Afshari, R., Sharifzadeh, F., Arefi, M., & Hejazi, H. (2010). Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass Agropyron elongatum Host. Seed Science and Technology, 38(2), 280-297.
Espagne, E. (Ed.), Ngo-Duc, T., Nguyen, M.-H., Pannier, E., Woillez, M.-N., Drogoul, A., Huynh, T. P. L., Le, T. T., Nguyen, T. T. H., Nguyen, T. T., Nguyen, T. A., Thomas, F., Truong, C. Q., Vo, Q. T., & Vu, C. T. (2021). Climate change in Viet Nam; Impacts and adaptation: A COP26 assessment report of the GEMMES Viet Nam project. Agence Française de Développement.
Franco, J. A. (2011). Root development under drought stress. Technology and Knowledge Transfer e-bulletin, 2(6), 1-3.
Hassan, U. M., Aamer, M., Chattha, M. U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture, 10(9), Article 396. https://doi.org/10.3390/agriculture10090396
Hoang, K. (2016). Cay luong thuc Viet Nam [Vietnamese Food Plants]. Ho Chi Minh City University of Agriculture and Forestry Publishing House.
Hoang, M. T., Vu, Q. S., & Nguyen, K. T. (2006). Giao trinh Sinh ly thuc vat [Plant Physiology]. University of Education Publishers.
Hoang, T. T. (2021). Ki thuat gieo cay giong Lua moi ST25. [Technical cultivating ST25 rice seed]. https://khuyennonghaiphong.gov.vn/ky-thuat-gieo-cay-giong-lua-moist25-tt14114.html
Justin, S. H. F. W., & Armstrong, W. (1987). The anatomical characteristics of roots and plant response to soil flooding. The New Phytologist, 106(3), 465-495. http://www.jstor.org/stable/2434813
Kang, S.-M., Radhakrishnan, R., Khan, A. L., Kim, M.-J., Park, J.-M., Kim, B.-R., Shin, D.-H., & Lee, I.-J. (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 84, 115-124. https://doi.org/10.1016/j.plaphy.2014.09.001
Khan, N. A., Mir, R., Khan, M., Javid, S., & Samiullah. (2002). Effects of gibberellic acid spray on nitrogen yield efficiency of mustard grown with different nitrogen levels. Plant Growth Regulation, 38, 243-247.
Kruk, J. (2005). Occurrence of chlorophyll precursors in leaves of cabbage heads–the case of natural etiolation. Journal of Photochemistry and Photobiology B: Biology, 80(3), 187-194.
Kuroda, M., Qzawa T., & Imagawa H. (1990). Changes in chloroplast peroxidase activities in relation to chlorophyll loss in barley leaf segments. Physiologia plantarum, 80, 555-560.
Kutlu, N., Terzi, R., Tekeli, Ç., Şenel, G., Battal, P., & Kadioğlu, A. (2009). Changes in anatomical structure and levels of endogenous phytohormones during leaf rolling in Ctenanthe setosa under drought stress. Turkish Journal of Biology, 33(2), 115-122.
Li, J. Z., Li, M. Q., Han, Y. C., Sun, H. Z., Du, Y. X., & Zhao, Q. Z. (2019). The crucial role of gibberellic acid on germination of drought-resistant upland rice. Biological Plantarum, 63, 529-535.
Li, Z., Lu, G. Y., Zhang, X. K., Zou, C. S., Cheng, Y., & Zheng, P. Y. (2010). Improving drought tolerance of germinating seeds by exogenous application of gibberellic acid (GA3) in rapeseed (Brassica napus L.). Seed Science and Technology, 38(2), 432-440.
Liang, F., Shen, L.-Z., Chen, M., & Yang, Q. (2008). Formation of intercellular gas space in the diaphragm during the development of aerenchyma in the leaf petiole of Sagittaria trifolia. Aquatic Botany, 88(3), 185-195.
Linkies, A., & Leubner-Metzger, G. (2012). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant cell reports, 31, 253-270.
Lodeyro, A. F., & Carrillo, N. (2015). Salt Stress in Higher Plants: Mechanisms of Toxicity and Defensive Responses. In B. Tripathi & M. Müller (Eds.), Stress Responses in Plants (pp. 1-33). Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_1
Luong, T. L. T., & Dinh, T. B. T. (2023). Nghien cuu anh huong cua GA3 len su sinh truong cua giong lua VD20 nuoi cay in vitro trong moi truong nhiem man [The effects of GA3 on the growth of VD20 rice varieties in vitro culture in a salinity environment]. Ho Chi Minh City University of Education Journal of Science, 20(5), 855-869.
Luong, T. L. T., & Vo, N. K. N. (2022). Khao sat anh huong cua AIA len su sinh truong của giong Lua ST25 nuoi cay in vitro trong moi truong nhiem man [The effects of AIA on the growth of ST25 rice varieties in vitro culture in a salinity environment]. Ho Chi Minh City University of Education Journal of Science, 19(12), 2090-2102.
Mahadi, S. N., Nulit, R., Mohtar, M. A., Ibrahim, M. H., & Ab Ghani, N. I. (2020). Synergistic effect of KCl, thiourea, GA3 and SA on the germination and early seedling growth enhancement of drought-stressed Malaysian indica rice cv. MR220. Biocatalysis and Agricultural Biotechnology, 29, Article 101779.
Matsukura, C., Itoh, S-I., Nemoto, K., Tanimoto, E., & Yamaguchi, J. (1998). Promotion of leaf sheath growth by gibberellic acid in a dwarf mutant of rice. Planta, 205, 145-152.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culturé. Physiologia plantarum, 15, 473-497.
Nguy, M. T., Tran, T. T., & Tran, T. H. (2021). Tim hieu anh huong cua stress han len su phat trien choi o cay ca chua (Solanum lycopersicum L.) [Effects of drought stress on shoot development of tomato (Solanum lycopersicum L.)]. VNUHCM Journal of Natural Sciences, 5(2), 1208-1215.
Nguyen, H. T., & Degenhardt, P. (2021). The Many Climate Challenges Facing the Mekong Delta. Rosa Luxemburg Stiftung. https://www.rosalux.de/en/news/id/44262/the-many-climate-challenges-facing-the-mekong-delta
Omena-Garcia, R. P., Martins, A. O., Medeiros, D. B., Vallarino, J. G., Ribeiro, D. M., Fernie, A. R., Araújo, W. L., & Nunes-Nesi, A. (2019). Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants. Environmental and Experimental Botany, 159, 95-107. https://doi.org/10.1016/j.envexpbot.2018.12.011
Open Development Vietnam. (2022). Han han [Drought]. https://vietnam.opendevelopmentmekong.net/vi/topics/droughts-and-saltwater-intrusion/
Paquin, R., & Lechasseur, P. (1979). Observations sur une méthode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57(18), 151-1854
Rauf, S., Al-Khayri, J.M., Zaharieva, M., Monneveux, P., & Khalil, F. (2016). Breeding Strategies to Enhance Drought Tolerance in Crops. In J. Al-Khayri, S. Jain, & D. Johnson (Eds.), Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits (pp. 397-445). Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_11
Sharifi, P., Amirnia, R., Majidi, E., Hadi, H., Moradi, F., Roustaei, M., & Jafarzadeh, J. (2012). Comparative analysis of phytohormones and oxidative damage in flag leaves of six contrasting wheat genotypes in response to drought stress. Advances in Environmental Biology, 1540-1552.
Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N. & Feller, U. 2008. Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Soil Science And Plant Nutrition, 54, 529-536.
Taiz, L., & Zeiger, E. (2010). Plant Physiology (5th ed.). Sinauer Associates Inc.
Tran, C. K. (1981). Thuc tap hinh thai & giai phau thuc vat [Morphology and Anatomy of Seed Plant] (pp.44-105). Professional University and High School Publishing House.
Vietnam Food Association. (October 15, 2021). Thi truong xuat khau gao Viet Nam thang 09/2021 [Vietnam rice export market in September 2021]. https://vietfood.org.vn/thitruong-xuat-khau-gao-viet-nam-thang-09-2021/
Wang, F. M., Huang, J. F., Tang, Y. L., & Wang, X. Z. (2007). New vegetation index and its application in estimating leaf area index of rice. Rice Science, 14(3), 195-203.
Zhang, G., Xu, Q., Zhu, X., Qian, Q., & Xue, H. (2009). Shallot-Like1 Is a Kanadi Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development. The Plant Cell, 21(3), 719-735.
DOI: https://doi.org/10.54607/hcmue.js.20.12.3905(2023)
Tình trạng
- Danh sách trống