NGHIÊN CỨU PHƯƠNG PHÁP ĐÁNH GIÁ HOẠT ĐỘ RADON TRONG NHÀ SỬ DỤNG HỆ PHỔ KẾ GAMMA

Lê Quang Vương, Nguyễn Huỳnh Khánh Duyên, Huỳnh Đình Chương, Hoàng Đức Tâm, Trần Thiện Thanh, Châu Văn Tạo

Tóm tắt


Theo Tổ chức Y tế thế giới (WHO), khí radon trong nhà là một trong những nguyên nhân gây ung thư phổi và cần được giám sát. Trong nghiên cứu này, chúng tôi trình bày một phương pháp đánh giá hoạt độ radon (222Rn) trong nhà dựa trên phép đo phổ gamma của đồng vị 214Bi, là sản phẩm phân rã của 222Rn trong chuỗi 238U. Đầu tiên, hoạt độ 222Rn trong năm căn phòng có kích thước khác nhau được đo bằng hệ thiết bị RAD7. Tiếp theo, hoạt độ 214Bi được xác định bằng hệ phổ kế gamma sử dụng đầu dò NaI(Tl) kết hợp với mô phỏng MCNP6. Hàm làm khớp tuyến tính thể hiện mối tương quan tốt giữa kết quả hoạt độ 214Bi và 222Rn (R2 = 0,998). Phương pháp này có thể cho kết quả dự đoán nhanh chóng hoạt độ 222Rn trong nhà, hỗ trợ điều tra giám sát các khu vực có hàm lượng 222Rn bất thường.


Từ khóa


radon trong nhà; MCNP; đầu dò NaI(Tl); RAD7; hoạt độ phóng xạ

Toàn văn:

PDF

Trích dẫn


ADMCA software. (2023). DP5 Digital Pulse Processor Based Software. https://www.amptek.com/software/dp5-digital-pulse-processor-software/dppmca-display-acquisition-software

Amptek Inc. (2008). GAMMA RAD5 Advance product information. https://amptek.emf-japan.com/products/pdf/10_GAMMA-RAD5.pdf

Awhida, A., Ujić, P., Vukanac, I., Đurašević, M., Kandić, A., Čeliković, I., Lončar, B., & Kolarž, P. (2016). Novel method of measurement of radon exhalation from building materials. Journal of Environmental Radioactivity, 164, 337-343. https://doi.org/10.1016/j.jenvrad.2016.08.009

Azeez, H. H., Mohammed, M. A., & Abdullah, G. M. (2021). Measurement of radon concentrations in rock samples from the Iraqi Kurdistan Region using passive and active methods. Arabian Journal of Geosciences, 14, Article 572. https://doi.org/10.1007/s12517-021-06937-3

Barba-Lobo, A., Gutiérrez-Álvarez, I., San Miguel, E. G., & Bolívar, J. P. (2023). A methodology to determine 212Pb, 212Bi, 214Pb and 214Bi in atmospheric aerosols; Application to precisely obtain aerosol residence times and Rn-daughters’ equilibrium factors. Journal of Hazardous Materials, 445, Article 130521. https://doi.org/10.1016/j.jhazmat.2022.130521

Berens, A. S., Diem, J., Stauber, C., Dai, D., Foster, S., & Rothenberg, R. (2017). The use of gamma-survey measurements to better understand radon potential in urban areas. Science of The Total Environment, 607-608, 888-899. https://doi.org/10.1016/j.scitotenv.2017.07.022

Bossew, P., Žunić, Z.S., Stojanovska, Z., Tollefsen, T., Carpentieri, C., Veselinović, N., Komatina, S., Vaupotič, J., Simović, R.D., Antignani, S., & Bochicchio, F. (2014). Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia – application of geostatistical methods. Journal of Environmental Radioactivity, 127, 141-148. https://doi.org/10.1016/j.jenvrad.2013.09.015

Chan, N. N., Phong, L. T., & Ngan, N. B. (2007). Radon in the air: Its influence on the human health and some results of radon emanometry serving the survey and evaluation of the environment. Journal of Geology, A(7-8), 72-75.

Demoury, C., Ielsch, G., Hemon, D., Laurent, O., Laurier, D., Clavel, J., & Guillevic, J. (2013). A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. Journal of Environmental Radioactivity, 126, 216-225. https://doi.org/10.1016/j.jenvrad.2013.08.006

DURRIDGE. (2009). RAD7 Radon Detector User Manual. https://www.manualslib.com/manual/1158422/Durridge-Rad7.html

Environmental Protection Agency. (2016). A Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family From Radon. Washington, DC, USA: EPA402/K-12/002.

Gilmore, R. G. (2008). Practical gamma-ray spectrometry. Chichester Hoboken (N.J.): Wiley.

Gulan, L., Stajic, J. M., Spasic, D., & Forkapic, S. (2023). Radon levels and indoor air quality after application of thermal retrofit measures—a case study. Air Quality, Atmosphere & Health, 16(2), 363-373. https://doi.org/10.1007/s11869-022-01278-w

Hoang, D. T., Huynh, D. C., Tran, T. T., & Chau, V. T. (2016). A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector. Radiation Physics and Chemistry, 125, 88-93. https://doi.org/10.1016/j.radphyschem.2016.03.020

Hosoda, M., Nugraha, E. D., Akata, N., Yamada, R., Tamakuma, Y., Sasaki, M., Kelleher, K., Yoshinaga, S., Suzuki, T., Rattanapongs, C. P., Furukawa, M., Yamaguchi, M., Iwaoka, K., Sanada, T., Miura, T., Kusdiana, Dadong Iskandar, Pudjadi, E., Kashiwakura, I., & Tokonami, S. (2021). A unique high natural background radiation area – Dose assessment and perspectives. Science of The Total Environment, 750, Article 142346. https://doi.org/10.1016/j.scitotenv.2020.142346

Kaur, R., Shikha, D., Kaushal, A., Gupta, R., Singh, S. P., Chauhan, R. P., & Mehta, V. (2021). Measurement of indoor 222Rn, 220Rn and decay products along with naturally occurring radionuclides in some monuments and museums of Punjab, India. Journal of Radioanalytical and Nuclear Chemistry, 330(3), 1357-1364. https://doi.org/10.1007/s10967-021-07996-2

Kumar, A., Chauhan, R. P., Joshi, M., & Sahoo, B. K. (2014). Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements. Journal of Environmental Radioactivity, 127, 50-55. https://doi.org/10.1016/j.jenvrad.2013.10.004

Lee, E. R., Chang, B. U., Kim, H. J., Song, M. H., & Kim, Y. J. (2014). Geographical distribution of indoor radon and related geological characteristics in Bonghwa County, a provisional radon-prone area in Korea. Radiation Protection Dosimetry, 167(4), 620-625. https://doi.org/10.1093/rpd/ncu326

Lee, E. R., Chang, B. U., & Kim, Y. J. (2017). Radon survey in school and estimation of effective dose using corrected radon concentration. Radiation Protection Dosimetry, 179(2), 101-107. https://doi.org/10.1093/rpd/ncx216

Liu, H., Wang, N., Chu, X., Li, T., Zheng, L., Yan, S., & Li, S. (2016). Mapping radon hazard areas using 238U measurements and geological units: a study in a high background radiation city of China. Journal of Radioanalytical and Nuclear Chemistry, 309(3), 1209-1215. https://doi.org/10.1007/s10967-016-4717-5

LNHB Nucléide-Lara. (2022). http://www.nucleide.org/Laraweb/index.php

Meisenberg, O., Mishra, R., Joshi, M., Gierl, S., Rout, R., Guo, L., Agarwal, T., Kanse, S., Irlinger, J., Sapra, B. K., & Tschiersch, J. (2017). Radon and thoron inhalation doses in dwellings with earthen architecture: Comparison of measurement methods. Science of The Total Environment, 579, 1855-1862. https://doi.org/10.1016/j.scitotenv.2016.11.170

Ménesguen, Y., & Lépy, M. C. (2021). COLEGRAM, a flexible user-friendly software for processing of ionizing radiation spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1003, Article 165341. https://doi.org/10.1016/j.nima.2021.165341

Olsthoorn, B., Rönnqvist, T., Lau, C., Rajasekaran, S., Persson, T., Månsson, M., & Balatsky, A. V. (2022). Indoor radon exposure and its correlation with the radiometric map of uranium in Sweden. Science of The Total Environment, 811, Article 151406. https://doi.org/10.1016/j.scitotenv.2021.151406

Park, N. W., Kim, Y., Chang, B. U., & Kwak, G. H. (2019). County-level indoor radon concentration mapping and uncertainty assessment in South Korea using geostatistical simulation and environmental factors. J Environ Radioact, 208-209, Article 106044. https://doi.org/10.1016/j.jenvrad.2019.106044

Pederson, S. P., Forster, R. A., & Booth, T. E. (1997). Confidence Interval Procedures for Monte Carlo Transport Simulations. Nuclear Science and Engineering, 127(1), 54-77. https://doi.org/10.13182/NSE97-A1921

Pelowitz, P. (2013). MCNP6TM User's manual, Version 1.0. Los Alamos National Laboratory report LA-CP-13-00634.

Petermann, E., & Bossew, P. (2021). Mapping indoor radon hazard in Germany: The geogenic component. Science of The Total Environment, 780, Article 146601. https://doi.org/10.1016/j.scitotenv.2021.146601

Psichoudaki, M., & Papaefthymiou, H. (2008). Natural radioactivity measurements in the city of Ptolemais (Northern Greece). J Environ Radioact, 99(7), 1011-1017. https://doi.org/10.1016/j.jenvrad.2007.12.001

Shi, H. X., Chen, B. X., Li, T. Z., & Yun, D. (2002). Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector. Applied Radiation and Isotopes, 57(4), 517-524. https://doi.org/10.1016/s0969-8043(02)00140-9

Shimadzu. (2022). EDX-7000/8000/8100. https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/brochures/10371/c142-e049_edx-8100.pdf

Taylor-Lange, Sarah C., Juenger, Maria C. G., & Siegel, Jeffrey A. (2014). Radon emanation fractions from concretes containing fly ash and metakaolin. Science of The Total Environment, 466-467, 1060-1065. https://doi.org/10.1016/j.scitotenv.2013.08.005

To, T. H., Nguyen, N. T., & Huy, Duong, H. H. (2013). Construction a process to measurement the indoor radon concentration. VNUHCM Journal of Science and Technology Development, 16, 53-60.

Trevisi, R., Leonardi, F., Simeoni, C., Tonnarini, S., & Veschetti, M. (2012). Indoor radon levels in schools of South-East Italy. J Environ Radioact, 112, 160-164. https://doi.org/10.1016/j.jenvrad.2012.05.030

Tsutsumi, M., Oishi, T., Kinouchi, N., Sakamoto, R., & Yoshida, M. (2001). Simulation of the Background for Gamma Detection System in the Indoor Environments of Concrete Buildings. Journal of Nuclear Science and Technology, 38(12), 1109-1114. https://doi.org/10.1080/18811248.2001.9715143

UNSCEAR. (2000). United Nations Scientifc Committee on the efects of atomic radiation, sources and efects of ionizing radiation. New York: United Nations.

Vietnam standard. (2016a). Measurement of radioactivity in the environment - Air: radon-222 - Part 1: Origins of radon and its short-lived decay products and associated measurement methods. In 10759-1:2016. Vietnam.

Vietnam standard. (2016b). Measurement of radioactivity in the environment - Air: radon-222 - Part 8: Methodologies for initial and additional investigations in buildings. In 10759-8:2016 (Vol. 10759-8:2016). Vietnam.

Vietnamese Standard. (2019). QCVN 16:2019/BXD - National Technical Regulations on Products, Goods of Building Materials. Vietnam.

WHO. (2009). WHO Handbook on Indoor Radon: A Public Health Perspective. Geneva, Switzerland: World Health Organization.

Yarmoshenko, I. V., Vasilyev, A. V., Onishchenko, A. D., Kiselev, S. M., & Zhukovsky, M. V. (2014). Indoor radon problem in energy efficient multi-storey buildings. Radiation Protection Dosimetry, 160(1-3), 53-56. https://doi.org/10.1093/rpd/ncu110

Yarmoshenko, I., Vasilyev, A., Malinovsky, G., Bossew, P., Žunić, Z. S., Onischenko, A., & Zhukovsky, M. (2016). Variance of indoor radon concentration: Major influencing factors. Science of The Total Environment, 541, 155-160. https://doi.org/10.1016/j.scitotenv.2015.09.077




DOI: https://doi.org/10.54607/hcmue.js.20.12.3911(2023)

Tình trạng

  • Danh sách trống