ẢNH HƯỞNG CỦA ĐIỀU KIỆN THỦY NHIỆT ĐẾN TÍNH CHẤT QUANG CỦA HẠT CACBON NANO ĐƯỢC TỔNG HỢP TỪ QUẢ BẦU
Tóm tắt
Trong nghiên cứu này, chúng tôi thực hiện khảo sát sự ảnh hưởng của điều kiện chế tạo (nhiệt độ thủy nhiệt, khối lượng tiền chất, thời gian thủy nhiệt) đến tính chất quang của hạt cacbon nano (CNPs) được chế tạo từ quả bầu bằng phương pháp thuỷ nhiệt. Các yếu tố như nhiệt độ, khối lượng tiền chất và thời gian thủy nhiệt đã được chúng tôi khảo sát một cách khá chi tiết. Phép đo chụp ảnh kính hiển vi điện tử truyền qua, phổ năng lượng tán xạ tia X, nhiễu xạ tia X, và phổ tán xạ Raman đã được sử dụng để nghiên cứu hình thái, thành phần nguyên tố và cấu trúc của CNPs. Phép đo phổ phát quang được sử dụng để so sánh cường độ phát quang và nghiên cứu sự ảnh hưởng của điều kiện thủy nhiệt đến tính chất quang của CNPs. Kết quả nghiên cứu cho thấy CNPs chế tạo được có kích thước hạt phân bố trong vùng rộng từ 10 nm đến 100 nm. Phổ phát quang của CNPs phát quang mạnh nhất khi được kích thích ở bước sóng 350 nm. Trong nghiên cứu này, CNPs thu được khi thủy nhiệt 4 g bầu ở nhiệt độ 220°C trong thời gian 12 giờ cho cường độ phát quang mạnh nhất.
Từ khóa
Toàn văn:
PDFTrích dẫn
Ansi, V. A., & Renuka, N. K. (2018). Table sugar derived Carbon dot – a naked eye sensor for toxic Pb2+ ions. Sensors and Actuators B: Chemical, 264, 67-75. https://doi.org/10.1016/j.snb.2018.02.167
Bui, T. H., Phuong, D. T., & Vuong, H. P. (2019). Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. Journal of Nanotechnology, 2019, Article e2852816. https://doi.org/10.1155/2019/2852816
Cui, L., Ren, X., Sun, M., Liu, H., & Xia, L. (2021). Carbon Dots: Synthesis, Properties and Applications. Nanomaterials, 11, Article 3419. https://doi.org/10.3390/nano11123419
Da Silva, A. O., Rodrigues, M. O., Sousa, M. H., & Campos, A. F. C. (2021). pH-Dependent surface properties of N–Cdots obtained by the hydrothermal method with multicolored emissions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621, Article 126578. https://doi.org/10.1016/j.colsurfa.2021.126578
Deme, G., Belay, A., Andoshe, D. M., Barsisa, G., Tsegaye, D., Tiruneh, S., & Seboka, C. (2023). Effect of Hydrothermal Reaction Temperature on Fluorescent Properties of Carbon Quantum Dots Synthesized from Lemon Juice for Adsorption Applications. Journal of Nanomaterials, 2023, Article e1701496. https://doi.org/10.1155/2023/1701496
Ding, H., Li, X.-H., Chen, X.-B., Wei, J.-S., Li, X.-B., & Xiong, H.-M. (2020). Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 127, Article 231101. https://doi.org/10.1063/1.5143819
Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J. N., Hayashi, S., & Domen, K. (2004). A carbon material as a strong protonic acid. Angewandte Chemie (International Ed. in English), 43(22), 2955-2958. https://doi.org/10.1002/anie.200453947
Jiang, C., Wu, H., Song, X., Ma, X., Wang, J., & Tan, M. (2014). Presence of photoluminescent carbon dots in Nescafe® original instant coffee: Applications to bioimaging. Talanta, 127,
-74. https://doi.org/10.1016/j.talanta.2014.01.046
Li, H., Kang, Z., Liu, Y., & Lee, S.-T. (2012). Carbon nanodots: Synthesis, properties and applications. Journal of Materials Chemistry, 22(46), 24230-24253. https://doi.org/10.1039/C2JM34690G
Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., & Liu, Y. (2019). A review on the effects of carbon dots in the plant system. Materials Chemistry Frontiers, 4, 437-448. https://doi.org/10.1039/C9QM00614A
Liu, L., Li, Y., Zhan, L., Liu, Y., & Huang, C. (2011). One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions. Science China Chemistry, 54(8), 1342-1347. https://doi.org/10.1007/s11426-011-4351-6
Liu, M., Xu, Y., Niu, F., Gooding, J. J., & Liu, J. (2016). Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, 141(9), 2657-2664. https://doi.org/10.1039/C5AN02231B
Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A. M., Al-Youbi, A. O., & Sun, X. (2012). Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions. Advanced Materials, 24(15), 2037-2041. https://doi.org/10.1002/adma.201200164
Miean, K. H., & Mohamed, S. (2001). Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. Journal of Agricultural and Food Chemistry, 49(6), 3106-3112. https://doi.org/10.1021/jf000892m
Ngo, K. Q. (2022). Anh huong cua nhiet do thuy nhiet tinh chat quang cua dung dich hat cacbon nano duoc che tao tu hat dau xanh [Effect of reaction temperature on optical properties of carbon nanoparticles derived from mung bean]. Vietnam Journal of Science and Technology - B, 64(6), 64-68. https://doi.org/10.31276/VJST.64(6).64-68
Prasannan, A., & Imae, T. (2013). One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Industrial & Engineering Chemistry Research, 52(44), 15673-15678. https://doi.org/10.1021/ie402421s
S, S. P. N., N, K., & Pk, S. G. (2020). Green Synthesized Luminescent Carbon Nanodots for the Sensing Application of Fe3+ Ions. Journal of Fluorescence, 30(2), 357-363. https://doi.org/10.1007/s10895-020-02505-2
Saafie, N., Sambudi, N. S., Wirzal, M. D. H., & Sufian, S. (2023). Effect of Hydrothermal Conditions on Kenaf-Based Carbon Quantum Dots Properties and Photocatalytic Degradation. Separations, 10(2), Article 2. https://doi.org/10.3390/separations10020137
Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chemical Communications, 48(70), 8835-8837. https://doi.org/10.1039/C2CC33796G
Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A.-H., & Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules (Basel, Switzerland), 25(22), Article 5243. https://doi.org/10.3390/molecules25225243
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. Journal of the American Chemical Society, 126(40), 12736-12737. https://doi.org/10.1021/ja040082h
Xu, Y., Tang, C.-J., Huang, H., Sun, C.-Q., Zhang, Y.-K., Ye, Q.-F., & Wang, A.-J. (2014). Green Synthesis of Fluorescent Carbon Quantum Dots for Detection of Hg2+. Chinese Journal of Analytical Chemistry, 42(9), 1252-1258. https://doi.org/10.1016/S1872-2040(14)60765-9
Zhang, J., Zhao, X., Xian, M., Dong, C., & Shuang, S. (2018). Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta, 183, 39-47. https://doi.org/10.1016/j.talanta.2018.02.009
Zheng, J., Wang, J., Wang, Y., Yang, Y., Liu, X., & Xu, B. (2018). Facile and Rapid Synthesis of Yellow-Emission Carbon Dots for White Light-Emitting Diodes. Journal of Electronic Materials, 47(12), 7497-7504. https://doi.org/10.1007/s11664-018-6691-x
Zhi, B., Gallagher, M. J., Frank, B. P., Lyons, T. Y., Qiu, T. A., Da, J., Mensch, A. C., Hamers, R. J., Rosenzweig, Z., Fairbrother, D. H., & Haynes, C. L. (2018). Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact. Carbon, 129, 438-449. https://doi.org/10.1016/j.carbon.2017.12.004
Zhu, C., Zhai, J., & Dong, S. (2012). Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical Communications, 48(75), 9367-9369. https://doi.org/10.1039/C2CC33844K
Zulfajri, M., Gedda, G., Chang, C.-J., Chang, Y.-P., & Huang, G. G. (2019). Cranberry Beans Derived Carbon Dots as a Potential Fluorescence Sensor for Selective Detection of Fe3+ Ions in Aqueous Solution. ACS Omega, 4(13), 15382-15392. https://doi.org/10.1021/acsomega.9b01333
DOI: https://doi.org/10.54607/hcmue.js.20.12.4012(2023)
Tình trạng
- Danh sách trống