ẢNH HƯỞNG CỦA NỒNG ĐỘ NPK LÊN HÀM LƯỢNG PROTEIN VÀ KHẢ NĂNG CHỐNG OXY HÓA CỦA SPIRULINA SP. NUÔI CẤY BẰNG HỆ THỐNG PLASTIC BAG PHOTO – BIOREACTOR

Võ Hồng Trung, Nguyễn Mộng Thảo Uyên, Phạm Lương Anh Tuấn, Đỗ Anh Thư, Nguyễn Thị Hồng Phúc

Tóm tắt


Spirulina sp. là tảo lam có cấu trúc xoắn, hàm lượng protein chiếm 60-70% trọng lượng khô và ứng dụng làm thực phẩm chức năng giúp ngăn ngừa lão hóa và ung thư. Dinh dưỡng nitơ và phosphor trong môi trường nuôi cấy ảnh hưởng mạnh lên hàm lượng protein và khả năng chống oxy hóa của Spirulina sp. Nghiên cứu ảnh hưởng ba nồng độ phân bón NPK (0,1g/L; 0,5g/L; 1g/L) lên hàm lượng protein, hàm lượng phenolic tổng và khả năng chống oxy hóa (I%, IC50 và AAI) của Spirulina. Kết quả cho thấy trong môi trường Zarrouk bổ sung NPK 0,5g/L có hàm lượng protein, phenolic và khả năng chống oxy hóa cao hơn so với môi trường bổ sung NPK 0,1g/L và 1g/L. Ngoài ra khả năng chống oxy hóa (IC50 và AAI) của Spirulina sp. trong môi trường Zarrouk bổ sung NPK 0,1g/L cao hơn môi trường bổ sung NPK 0,5g/L; 1g/L.

Từ khóa


Spirulina sp., môi trường Zarrouk; hàm lượng protein; phenolic; chống oxy hóa

Toàn văn:

PDF

Trích dẫn


Agustini, T. W., Suzery, M., Sutrisnanto, D., & Ma’ruf, W. F. (2015). Comparative Study of Bioactive Substances Extracted from Fresh and Dried Spirulina sp.. Procedia Environmental Sciences, 23, 282-289.

Albayrak, S., Aksoy, A., Sagdic, O., & Hamzaoglu, E. (2010). Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food chemistry, 119(1), 114-122. doi:https://doi.org/10.1016/j.foodchem.2009.06.003

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.

Cornet, J. F., Dussap, C. G., & Dubertret, G. (1992). A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics. Biotechnol Bioeng, 40(7), 817-825. doi:10.1002/bit.260400709

Danesi, E., Rangel-Yagui, C. d. O., De Carvalho, J., & Sato, S. (2002). An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy, 23(4), 261-269.

El Baky, H. H. A., El Baroty, G. S., & Ibrahem, E. A. (2015). Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutricion Hospitalaria, 32(1), 231-241.

Finamore, A., Palmery, M., Bensehaila, S., & Peluso, I. (2017). Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxid Med Cell Longev, 3247528. doi:10.1155/2017/3247528

Fried, S., Mackie, B., & Nothwehr, E. (2003). Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond. Tillers, 4, 21-24.

Gershwin, M. E., & Belay, A. (2007). Spirulina in human nutrition and health: CRC press.

Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24(6), 1477-1486.

Hajimahmoodi, M., Faramarzi, M. A., Mohammadi, N., Soltani, N., Oveisi, M. R., & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. Journal of Applied Phycology, 22(1), 43-50.

KAND, S. (2013). Effect of different nitrogen concentrations on the biomass and biochemical consituents ofSpirulina platensis [Geitler]. Asian Journal of Bio Science, 8(2), 245-247.

Konícková, R., Vanková, K., Vaníková, J., Vánová, K., Muchová, L., Subhanová, I., . . . Kolár, M. (2014). Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology, 13(2), 273-283.

Kumari, A., Kumar, A., Pathak, A. K., & Guria, C. (2014). Carbon dioxide assisted Spirulina platensis cultivation using NPK-10: 26: 26 complex fertilizer in sintered disk chromatographic glass bubble column. Journal of CO2 Utilization, 8, 49-59.

Lim, S., Cheung, P., Ooi, V., & Ang, P. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50(13), 3862-3866.

Madkour, F. F., Kamil, A. E.-W., & Nasr, H. S. (2012a). Production and nutritive value of Spirulina platensis in reduced cost media. The egyptian journal of aquatic research, 38(1), 51-57.

Madkour, F. F., Kamil, A. E.-W., & Nasr, H. S. (2012b). Production and nutritive value of Spirulina platensis in reduced cost media. Egyptian Journal of Aquatic Research, 38, 51-57.

Miranda, M., Cintra, R., Barros, S. B. d. M., & Mancini-Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Brazilian Journal of Medical and biological research, 31(8), 1075-1079.

Miranda, M. S., Cintra, R. G., Barros, S. B., & Mancini Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res, 31(8), 1075-1079.

Morsy, O., Sharoba, A. E.-D., & HEM, B. (2014). Production and evaluation of extruded food products by using spirulina algae. Annals of Agric. Sci., Moshtohor ISSN, 1110-0419.

Mukherjee, P., Gorain, P. C., Paul, I., Bose, R., Bhadoria, P., & Pal, R. (2019). Investigation on the effects of nitrate and salinity stress on the antioxidant properties of green algae with special reference to the use of processed biomass as potent fish feed ingredient. Aquaculture International, 1-24.

Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food chemistry, 112(3), 654-658.

Shabana, E. F., Gabr, M. A., Moussa, H. R., El-Shaer, E. A., & Ismaiel, M. M. S. (2017). Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation. Food Chem, 214, 550-555. doi:10.1016/j.foodchem.2016.07.109

Tran, D., Doan, N., Louime, C., Giordano, M., & Portilla, S. (2014). Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World J Microbiol Biotechnol, 30(1), 317-322. doi:10.1007/s11274-013-1413-2

Uslu, L., Içik, O., Koç, K., & Göksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3),

-389.

Yaltirak, T., Aslim, B., Ozturk, S., & Alli, H. (2009). Antimicrobial and antioxidant activities of Russula delica Fr. Food Chem Toxicol, 47(8), 2052-2056. doi:10.1016/j.fct.2009.05.029




DOI: https://doi.org/10.54607/hcmue.js.17.6.2744(2020)

Tình trạng

  • Danh sách trống