KHẢO SÁT ĐIỀU KIỆN NUÔI CẤY VÀ NGUỒN DINH DƯỠNG ẢNH HƯỞNG ĐẾN QUÁ TRÌNH SINH TỔNG HỢP ENZYME TIÊU SỢI HUYẾT CỦA CHỦNG Bacillus sp. ES4

Bùi Thị Thanh, Phan Tuấn Anh, Nguyễn Lan Hương

Tóm tắt


 

 

Vi khuẩn Bacillus sp. có khả năng sinh tổng hợp enzym tiêu sợi huyết. Điều kiện nuôi cấy và nguồn dinh dưỡng là những yếu tố quan trọng ảnh hưởng đến sự phát triển và sản xuất enzyme của chủng. Vì vậy, trong nghiên cứu này, chúng tôi khảo sát điều kiện nuôi cấy của chủng Bacillus sp. ES4 như nhiệt độ, pH, nguồn dinh dưỡng C (glucose, sucrose, glycerol và maltose), nguồn dinh dưỡng N (cao nấm men, cao thịt, peptone và tryptone), các ion kim loại (Ca2+, Mg2+, Mn2+, Zn2+, K+, Fe2+ và Cu2+) và thời gian thu nhận sản phẩm enzyme. Kết quả cho thấy đối với Bacillus sp. ES4, nguồn C tốt nhất là glucose; nguồn N tốt nhất là pepton và cao nấm men; Ca2+ và Mg2+ là những yếu tố dinh dưỡng có ảnh hưởng lớn đến quá trình sinh tổng hợp enzym tiêu sợi huyết của chủng. Ở điều kiện nuôi cấy 370C và pH = 6,5, chủng cho hoạt độ enzym tốt nhất ở 24 giờ, chủng nuôi cấy trong bình tam giác 250ml chứa 50ml môi trường cho hoạt độ enzym cao nhất đạt 450±25. FU/ml.

 


Từ khóa


Bacilus sp.; điều kiện nuôi cấy; sản xuất enzyme; enzyme tiêu sợi huyết; môi trường dinh dưỡng tối ưu

Toàn văn:

PDF (English)

Trích dẫn


Afifah, D. N., Muhammad, S., Dahrul, S., Yanti., & Maggy, T. S. (2014). Isolation and identification of fibrinolytic protease-producing microorganisms from Red Oncom and Gembus, Indonesian fermented soybean cakes. Malaysian Journal of Microbiology, 10, 273-279.

Agrebi, R., Haddar, A., Hajji, M., Frikha, F., Manni, L., Jellouli, K., & Nasri, M. (2009). Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Can. J. Microbiol, 55, 1049-1061. 10.1139/w09-057

Dinh, B. Q. A., Nguyen, M., Do. N. A. H., & Pham, V. H. (2015). Isolation and Optimization of Growth Condition of Bacillus sp. from Fermented Shrimp Paste for High Fibrinolytic Enzyme Production. Arabian Journal for Science and Engineering, 40, 23-28. 10.1007/s13369-014-1506-8.

Bui, T. T., Dam, T. H., Pham, T. A., & Nguyen, L. H. (2022). Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. Isolated from Vietnamese Traditional Fermented Soybean (Tuong ban) using Ultraviolet Irradiation and Chemical Mutation. Int.J.Curr.Microbiol.App.Sci, 11, 67-80. doi: 10.20546/ijcmas.2022.1105.010

Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E., & Lumyong, S. (2002). Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Science Asia, 28, 241-245.

Chen, J. H. B., Zhengbo, H., Qiyi, H., Youjin, H., & Chen, Z. (2013). Isolation and identification of an effective fibrinolytic strain Bacillus subtilis FR-33 from the Chinese doufuru and primary analysis of its fibrinolytic enzyme. African Journal of Microbiology Research, 7, 2001-2009. 10.5897/AJMR12.282

Cui. L, Chen, X. C., Jiang, M., Xin, L., & Guijun, Y. (2008). A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microbiol Biotechnol, 24, 483-489. DOI 10.1007/s11274-007-9497-1

Cui, W., Suo, F., Cheng, J., Han, L., Hao, W., & Guo, J. (2018). Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microbial Biotechnology, 11, doi: 10.1111/1751-7915.13298.

Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Venkatesh, B. S., Senthilkumar, S. R., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99,

-8174.

Do. N. A. H., Pham, A. H., & Pham, V. H. (2016). Screening and identification of Bacillus sp. isolated from traditional Vietnamese soybean-fermented products for high fibrinolytic enzyme production. International Food Research Journal, 23, 326-331.

Eldeen, K. I., Elrashied, E. E., & Hassan, B. E. (2015). Optimization of Culture Conditions to Enhance Nattokinase Production Using RSM. American Journal of Microbiological Research, 3, 165-170. 10.12691/ajmr-3-5-3.

Fathma S., Narwastu, P., Puspo, E. G., Raymond, R. T., & Maggy, T. S.(2020). Fibrinolytic bacteria of Indonesian fermented soybean: preliminary study on enzyme activity and protein profile. Food Sci. Technol, Campinas, 40, 458-465. 10.1590/fst.23919.

Hu, Y., Yu, D., Zhaoting Wang, Z., Jianjun, H., Tyagi, R., Yunxiang, L. & Yongmei, H. (2019). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Scientific reports, 9, 9235-9235. doi: 10.1038/s41598-019-45686-y

Jeong, W. J., Lee, A. R., Chun, J. Y., Cha, J. H., Song, Y. S., & Kim, J. H. (2009). Properties of cheonggukjang fermented with Bacillus strains with high fibrinolytic activities. Preventive Nutrition and Food Science, 14, 252-259.

Ju, S., Cao, Z., Wong, C., Liu, Y., Foda, M. F., & Zhang Z. (2019). Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production. Fermentation, 5, p. 92.

Junguo, L., Chang, T., Zhiya, M., & Huizhou, L. (2005). Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process, 40, 2757-2762. 10.1016/j.procbio.2004.12.025

Kwon, E. Y.,Kim, K. M., Kim, M. K., Lee, I. Y., & Kim, B. S. (2011). Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis. Bioprocess and biosystems engineering, 34, 789-793.

Mahajan, P. M., Sagar, V. G., & Smita, S. L. (2010). Production of nattokinase using Bacillus natto NRRL 3666: Media optimization, scale up, and kinetic modeling. Food Science and Biotechnology, 19, 1593-1603. doi: 10.1007/s10068-010-0226-4

Naga, R. N., & Divakar, G. (2014). An overview on microbial fibrinolytic protease. International Journal of Pharmaceutical Sciences and Research, 5(3), 643-656. doi: 10.13040/IJPSR.0975-8232

Nascimento, T. P., Amanda, E. S., Porto, C. S., Romero, M. P. B., Galba, M. C. T., & Porto, A. L. F. (2015) Production and characterization of new fibrinolytic protease from Mucor subitillissimus UCP 1262 in solid-state fermentation. Advances in Enzyme Research, 3, 81-91.

Nguyen, N. H., & Nguyen, T. H. (2016). Optimization Of The Possibility Synthetic Nattokinase In Soybean Substrates To Orientation Products Development. International Journal of Pharmaceutical Science Invention, 5, 35-41.

Nguyen, Q. U., Nguyen, H. N., Phan, T. H., & Nguyen, H. M. Q (2015). Buoc dau nghien cuu nattokinase cua chung vi khuan Bacillus sp. phan lap tu nem chua [The first research on nattokinase of Bacillus sp. isolated from Nem Chua]. Journal of Biology, 37, 129-133. 10.15625/0866-7160/v37n1se

Nguyen, A. T., Dinh, T. H. T., Tran, T. M. T, & Nguyen, T. H. (2015). Determination the optimum fermentation in obtaining nattokinase by Bacillus subtilis natto. International Journal of Innovation and Applied Studies, 13, 663-668.

Nguyen, T. A. T., Nguyen, T. M. K., Nguyen, D. H., Nguyen, Q. D. T., & Nguyen, H. L. (2020). Characterizations and fibrinolytic activity of serine protease from Bacillus subtilis C10. Current Pharmaceutical Biotechnology, 21, 110-116.

Ping, X., Yao, S. P., Liu, J. F., Ying, M., & Wang, Y. P. (2015). Enhanced Production of Fibrinolytic Enzyme from Bacillus amyloliquefaciens CGMCC 7380 Using Broad Bean as Substrate. Advance Journal of Food Science and Technology, 9, 832-839. doi: 10.19026/ajfst.9.1639

Salunke., A. S., & Arun, S. K. (2019). Data on isolation and purification of fibrinolytic enzyme from Pseudomonas baetica SUHU25. Data in Brief, 26, doi.org/10.1016/j.dib.2019.104369

Sharma. D., Shekhar, S., Kumar, A., & Godheja, J. (2020). Isolation, characterization, production and purification of fibrinolytic enzyme nattokinase from Bacillus subtilis. IJPSR, 31, 1768-1776. doi.org/10.13040/IJPSR.0975-8232

Singh, P., Negi, R., Sharma, V., Rani, A., Pallavi, & Prasad, R. (2018). Production of fibrinolytic enzyme (Nattokinase) from Bacillus sp. Indo American Journal of Pharmaceutical Sciences, 5, 379-383. doi.org/10.5281/zenodo.1155529

Smitha, K. V., & Pradeep, B. V. (2018). Optimization of Physical and Cultural Conditions of Fibrinolytic Enzyme from Bacillus altitudinis S-CSR 0020. Journal of Pure and Applied Microbiology, 12, 343-354. doi: 10.22207/JPAM.12.1.40

Sumi, H., Hamada, H., Tsushima, H., Mihara, H., & Muraki, H. (1987). A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet Experientia., 43, 1110-1111. http:doi:10.1007/BF01956052

Unrean. P., Nguyen, N. H. A., Visessanguan, W. & Kitsubun, P. (2012). Improvement of nattokinase production by Bacillus subtilis using an optimal feed strategy in fed-batch fermentation. KKU Res. J, 17, 769-777.

Vijayaraghavan, P. P. R., Samuel, G. P. V., Arumugaperumal, A., Naif, A. A. D., Mariadhas, V. A., Oh, Y. K., & Kim, Y. O. (2017). Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation. BioMed Research International, 2017, 1-13. doi: 10.1155/2017/3909657

Vijayaraghavan. P., & Samuel, G. P. V. (2014). Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic Activity In Vitro. BioMed research international, 2014, 725064. doi: 10.1155/2014/725064

Wang. J. K, Hua, H. C., & Ching, S. H. (2009). Optimization of the medium components by statistical experimental methods to enhance Nattokinase activity. Fooyin Journal of Health Sciences, 1, 2127. 10.1016/S1877-8607(09)60004-7

Wang. S. H, Zhang, C., Yang, Y. L., & Diao, M. (2008). Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547. World Journal of Microbiology and Biotechnology, 24, 475-482. 10.1007/s11274-007-9496-2

Weng, Y., Yao, J., Sparks, S., & Wang, K. Y. (2017). Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. International Journal of Molecular Sciences, 18, 523. doi: 10.3390/ijms18030523

Wu, R., Chen, G., Pan, S., Zeng, J., & Liang, Z. (2019). Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Scientific Reports, 9.

Yanti (2018). Screening, Purification, and Characterization of Fibrinolytic Enzyme-Producing Bacteria from Indonesian Fermented Foods. Scholars Academic Journal of Biosciences, 6, 598-605. http:doi.10.21276/sajb.2018.6.8.7

Yogesh, D., & Halami, P. M. (2017). Fibrinolytic enzymes of Bacillus spp.: An overview. International Food Research Journal, 24, 35-47.

Zhuang, Y., Yu, M., Le, H. G., Lee, S. J., Hye, S. J., Ji, Y. Y., Diana, N. A., & Kim, J. H. (2020). Isolation of 2 Bacillus Strains with Strong Fibrinolytic Activities from Kimchi. Microbiol. Biotechnol. Lett., 48, 439-446. 10.48022/mbl.2003.03008

Zu, X. Y., Zhang, Z. Y., Yang, Y. N., Che, H. T., Zhang, G. H., & Li, J. (2010). Thrombolytic activities of nattokinase extracted from Bacillus subtilis fermented soybean curd residues. Int. J. Biol. 2, 120-125.




DOI: https://doi.org/10.54607/hcmue.js.20.3.3756(2023)

Tình trạng