HOẠT HÓA ENYZME CASPASE-9 BỞI TRÌNH TỰ DNA CHỨA HAI CẤU TRÚC G-QUADRUPLEX
Tóm tắt
Từ khóa
Toàn văn:
PDFTrích dẫn
Balasubramanian, S., Hurley, L. H., & Neidle, S. (2011). Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov, 10(4), 261-275. doi:10.1038/nrd3428
Bao, H. L., Liu, H. S., & Xu, Y. (2019). Hybrid-type and two-tetrad antiparallel telomere DNA G-quadruplex structures in living human cells. Nucleic Acids Res, 47(10), 4940-4947. doi:10.1093/nar/gkz276
Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., & Neidle, S. (2006). Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res, 34(19), 5402-5415. doi:10.1093/nar/gkl655
Chambers, V. S., Marsico, G., Boutell, J. M., Di Antonio, M., Smith, G. P., & Balasubramanian, S. (2015). High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol, 33(8), 877-881. doi:10.1038/nbt.3295
Chao, Y., Shiozaki, E. N., Srinivasula, S. M., Rigotti, D. J., Fairman, R., & Shi, Y. (2005). Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol, 3(6), e183. doi:10.1371/journal.pbio.0030183
Dang, D. T., Nguyen, H. D., Merkx, M., & Brunsveld, L. (2013). Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. Angew Chem Int Ed Engl, 52(10), 2915-2919. doi:10.1002/anie.201208239
Dang, D. T., Nguyen, L. T. A., Truong, T. T. T., Nguyen, H. D., & Phan, A. T. (2021). Construction of a G-quadruplex-specific DNA endonuclease. Chem Commun (Camb), 57(37), 4568-4571. doi:10.1039/d0cc05890d
Dang, D. T., & Phan, A. T. (2016). Development of Fluorescent Protein Probes Specific for Parallel DNA and RNA G-Quadruplexes. Chembiochem, 17(1), 42-45. doi:10.1002/cbic.201500503
Dang, D. T., & Phan, A. T. (2019). Development of a ribonuclease containing a G4-specific binding motif for programmable RNA cleavage. Sci Rep, 9(1), 7432. doi:10.1038/s41598-019-42143-8
Duchler, M. (2012). G-quadruplexes: targets and tools in anticancer drug design. J Drug Target, 20(5), 389-400. doi:10.3109/1061186X.2012.669384
Gellert, M., Lipsett, M. N., & Davies, D. R. (1962). Helix formation by guanylic acid. Proc Natl Acad Sci U S A, 48(12), 2013-2018. doi:10.1073/pnas.48.12.2013
Gyrd-Hansen, M., Farkas, T., Fehrenbacher, N., Bastholm, L., Hoyer-Hansen, M., Elling, F., . . . Jaattela, M. (2006). Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol, 26(21), 7880-7891. doi:10.1128/MCB.00716-06
Hansel-Hertsch, R., Spiegel, J., Marsico, G., Tannahill, D., & Balasubramanian, S. (2018). Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc, 13(3), 551-564. doi:10.1038/nprot.2017.150
Heddi, B., Cheong, V. V., Martadinata, H., & Phan, A. T. (2015). Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide-quadruplex complex. Proc Natl Acad Sci U S A, 112(31), 9608-9613. doi:10.1073/pnas.1422605112
Jodoin, R., Carrier, J. C., Rivard, N., Bisaillon, M., & Perreault, J. P. (2019). G-quadruplex located in the 5'UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance. Nucleic Acids Res, 47(19), 10247-10266. doi:10.1093/nar/gkz777
Kuida, K. (2000). Caspase-9. Int J Biochem Cell Biol, 32(2), 121-124. doi:10.1016/s1357-2725(99)00024-2
Kumari, S., Bugaut, A., Huppert, J. L., & Balasubramanian, S. (2007). An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol, 3(4), 218-221. doi:10.1038/nchembio864
Lago, S., Nadai, M., Cernilogar, F. M., Kazerani, M., Dominiguez Moreno, H., Schotta, G., & Richter, S. N. (2021). Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun, 12(1), 3885. doi:10.1038/s41467-021-24198-2
Ma, Y., Yang, Y., Xin, J., He, L., Hu, Z., Gao, T., . . . Guo, Z. (2023). RNA G-Quadruplex within the 5'-UTR of FEN1 Regulates mRNA Stability under Oxidative Stress. Antioxidants (Basel), 12(2). doi:10.3390/antiox12020276
Marsden, V. S., O'Connor, L., O'Reilly, L. A., Silke, J., Metcalf, D., Ekert, P. G., . . . Strasser, A. (2002). Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature, 419(6907), 634-637. doi:10.1038/nature01101
Nguyen, L. T. A., & Dang, D. T. (2023). RHAU Peptides Specific for Parallel G-Quadruplexes: Potential Applications in Chemical Biology. Mol Biotechnol, 65(3), 291-299. doi:10.1007/s12033-022-00552-7
Ou, T. M., Lu, Y. J., Tan, J. H., Huang, Z. S., Wong, K. Y., & Gu, L. Q. (2008). G-quadruplexes: targets in anticancer drug design. ChemMedChem, 3(5), 690-713. doi:10.1002/cmdc.200700300
Pan, G., O'Rourke, K., & Dixit, V. M. (1998). Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem, 273(10), 5841-5845. doi:10.1074/jbc.273.10.5841
Patel, D. J., Phan, A. T., & Kuryavyi, V. (2007). Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res, 35(22), 7429-7455. doi:10.1093/nar/gkm711
Pop, C., Timmer, J., Sperandio, S., & Salvesen, G. S. (2006). The apoptosome activates caspase-9 by dimerization. Mol Cell, 22(2), 269-275. doi:10.1016/j.molcel.2006.03.009
Rosier, B., Markvoort, A. J., Gumi Audenis, B., Roodhuizen, J. A. L., den Hamer, A., Brunsveld, L., & de Greef, T. F. A. (2020). Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nat Catal, 3(3), 295-306. doi:10.1038/s41929-019-0403-7
Sahakyan, A. B., Murat, P., Mayer, C., & Balasubramanian, S. (2017). G-quadruplex structures within the 3' UTR of LINE-1 elements stimulate retrotransposition. Nat Struct Mol Biol, 24(3), 243-247. doi:10.1038/nsmb.3367
Sen, D., & Gilbert, W. (1988). Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 334(6180), 364-366. doi:10.1038/334364a0
Wu, C. C., Lee, S., Malladi, S., Chen, M. D., Mastrandrea, N. J., Zhang, Z., & Bratton, S. B. (2016). The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities. Nat Commun, 7, 13565. doi:10.1038/ncomms13565
Yin, Q., Park, H. H., Chung, J. Y., Lin, S. C., Lo, Y. C., da Graca, L. S., . . . Wu, H. (2006). Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Mol Cell, 22(2), 259-268. doi:10.1016/j.molcel.2006.03.030
DOI: https://doi.org/10.54607/hcmue.js.20.5.3792(2023)
Tình trạng
- Danh sách trống