PRELIMINARY RESULTS OF STUDY ON THE INFLUENCE OF CURING TEMPERATURE ON THE COMPRESSIVE STRENGTH OF FLY ASH CONCRETE

Lâm Duy Nhất

Tóm tắt


The global expansion of infrastructure is propelling the construction sector towards increased cement usage. However, cement production not only reduces natural resources but also affects the living environment by emitting a significant amount of greenhouse gases. To promote sustainable construction practices, reusing industrial waste into construction materials should be considered. This study was conducted to evaluate the possibility of replacing cement with fly ash in civil concrete, to increase the efficient use of natural resources and minimize the impact on the environment. The study proposes varying the proportion of fly ash in the concrete mix (ranging from 0% to 40%) and examining its impact on the final compressive strength of low-calcium fly ash concrete (FAC) under high-temperature curing conditions. Evaluation parameters include mass loss under dry conditions, wet and dry densities, and the maximum compressive strength attained to assess the durability of FAC. Preliminary results indicate that curing FAC specimens at 70°C leads to enhanced compressive strength. Furthermore, FAC demonstrates marginally higher wet density compared to traditional concrete, highlighting its versatility as a construction material. The study recommends prioritizing FAC usage in projects exposed to sunlight, considering its cost-effectiveness and environmental advantages. These initial insights provide valuable experimental data for advancing FAC utilization in residential construction.

 


Từ khóa


compressive strength; thermal curing; green concrete; fly ash; mineral additives

Trích dẫn


Amarnath, Y., Rama Chandurdu, C., Bhaskar Desai, V. (2012). Influence of fly ash replacement on strength properties of cement mortar. International Journal of Engineering Science and Technology, 4(08), 3657–3665.

ASTM C595/C595M (2021). Standard Specification for Blended Hydraulic Cements. ASTM International, West Conshohocken, PA.

ASTM C618 (2022).Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM international, West Conshohocken, PA.

Azzahran Abdullah, S. F., Yun-Ming, L., Al Bakri, M. M., Cheng-Yong, H., Zulkifly, K., & Hussin, K. (2018). Effect of Alkali Concentration on Fly Ash Geopolymers. IOP Conference Series: Materials Science and Engineering, 343(1). https://doi.org/10.1088/1757-899X/343/1/012013

Balamohan Balakrishnan, Mehdi Maghfouri, Vahid Alimohammadi, Iman Asadi, R. R. (2024). The acid and chloride permeability resistance of masonry cement plaster mortar incorporating high-volume fly ash content. Journal of Building Engineering, 86, 108783. https://doi.org/10.1016/j.jobe.2024.108783

Bhikshma, V., KOTI, R. M., & SRINIVAS, R. T. (2012). An Experimental Investigation on Properties of Geopolymer Concrete (No Cement Concrete). Asian J. Civ. Eng, 13, 841–853.

Bondar, D., Lynsdale, C. J., & Milestone, N. B. (2013). Alkali-Activated Natural Pozzolan Concrete as New Construction Material. ACI Materials Journal, 110(3), 331–337. https://doi.org/10.14359/51685667

British European Standards Specifications. (2011). Cement Part 1: Cement Composition, specifications and conformity criteria for common cements. London: European Committee For Standardisation.

Celik, K., Jackson, M. D., Mancio, M., Meral, C., Emwas, A. H., Mehta, P. K., & Monteiro, P. J. M. (2014). High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete. Cement and Concrete Composites, 45, 136–147. https://doi.org/10.1016/j.cemconcomp.2013.09.003

Davidovits, J. (1993). Geopolymer cement to minimize carbon-dioxde greenhouse-warming. Ceramic Transactions ·, 37(1), 165–182. https://www.researchgate.net/publication/284682578_Geopolymer_cement_to_minimize_carbon-dioxde_greenhouse-warming

Golewski, G. L. (2018). Effect of curing time on the fracture toughness of fly ash concrete composites. Composite Structures, 185(October), 105–112. https://doi.org/10.1016/j.compstruct.2017.10.090

Government Office. (2021). Chỉ thị số 08/CT-TTg ngày 26/3/2021 của Thủ tướng Chính phủ về đẩy mạnh xử lý, sử dụng tro, xỉ, thạch cao của các nhà máy nhiệt điện, hóa chất... làm nguyên liệu sản xuất vật liệu xây dựng và sử dụng trong công trình xây dựng.: Vols. 08/CT-TTg.

Government Office. (2023). Toàn văn Quyết định 500/QĐ-TTg ngày 15/5/2023 của Thủ tướng Chính phủ phê duyệt Quy hoạch phát triển điện lực quốc gia thời kỳ 2021 - 2030, tầm nhìn đến năm 2050.28. Toàn văn Quyết định 500/QĐ-TTg ngày 15/5/2023 của Thủ tướng Chính phủ phê duyệt Quy hoạch.

Hai Duong province Department of Construction. (2024). Công bố giá Tro xỉ nhiệt điện đốt than làm vật liệu san lấp. Https://Soxaydung.Haiduong.Gov.vn/vi-vn/2024/Trang/Cong-Bo-Gia-Tro-Xi-Nhiet-Dien-Dot-than-Lam-Vat-Lieu-San-Lap.Aspx.

HCMC Department of Construction. (2024). Công bố giá vật liệu xây dựng trên địa bàn Thành phố Hồ Chí Minh tháng 3/2024. Https://Soxaydung.Hochiminhcity.Gov.vn/Web/vi/Vat-Lieu-Xay-Dung/Cong-Bo-Gia-Vat-Lieu-Xay-Dung/-/Asset_publisher/PcoYAr5aCkog/Content/Cong-Bo-Gia-Vat-Lieu-Xay-Dung-Tren-Ia-Ban-Thanh-Pho-Ho-Chi-Minh-Thang-3-2024?_com_liferay_asset_publisher_web_portlet_Asse.

Ho, D. W. S., Chua, C. W., & Tam, C. T. (2003). Steam-cured concrete incorporating mineral admixtures. Cement and Concrete Research, 33(4), 595–601. https://doi.org/10.1016/S0008-8846(02)01028-1

Khoury, G. A. (1992). Compressive strength of concrete at high temperatures: A reassessment. Magazine of Concrete Research, 44(161), 291–309. https://doi.org/10.1680/macr.1992.44.161.291

Li, X., Bao, Y., Wu, L., Yan, Q., Ma, H., Chen, G., & Zhang, H. (2017). Thermal and mechanical properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures. Construction and Building Materials, 157, 829–838. https://doi.org/10.1016/j.conbuildmat.2017.09.125

Li, Y. L., Zhao, X. L., Singh Raman, R. K., & Al-Saadi, S. (2018). Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand. Construction and Building Materials, 159, 704–724. https://doi.org/10.1016/j.conbuildmat.2017.10.104

Liu, Z., Cai, C. S., Peng, H., & Fan, F. (2016). Experimental Study of the Geopolymeric Recycled Aggregate Concrete. Journal of Materials in Civil Engineering, 28(9), 1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0001584

Mengxiao, S., Qiang, W., & Zhikai, Z. (2015). Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition. Construction and Building Materials, 98, 649–655. https://doi.org/10.1016/j.conbuildmat.2015.08.134

Ministry of Industry and Trade (2021). Quyết định số 1818/QĐ-BCT ngày 20/7/2021 của Bộ trưởng Công thương về việc ban hành kế hoạch của Bộ thực hiện Chỉ thị số 08/CT-TTg.

Nagalia, G., Park, Y., Abolmaali, A., & Aswath, P. (2016). Compressive Strength and Microstructural Properties of Fly Ash–Based Geopolymer Concrete. Journal of Materials in Civil Engineering, 28(12), 1–11. https://doi.org/10.1061/(asce)mt.1943-5533.0001656

Nagral, M. R., Ostwal, T., & Chitawadagi, M. V. (2014). Effect of curing temperature and curing hours on the properties of geo-polymer concrete. Int. J. Comput. Eng. Res, 4(9), 1-11.

Nayaka, R. R., Alengaram, U. J., Jumaat, M. Z., Yusoff, S. B., & Alnahhal, M. F. (2018). High volume cement replacement by environmental friendly industrial by-product palm oil clinker powder in cement – lime masonry mortar. Journal of Cleaner Production, 190, 272–284. https://doi.org/10.1016/j.jclepro.2018.03.291

Nayaka, R. R., Alengaram, U. J., Jumaat, M. Z., Yusoff, S. B., & Ganasan, R. (2019). Performance evaluation of masonry grout containing high volume of palm oil industry by-products. Journal of Cleaner Production, 220, 1202–1214. https://doi.org/10.1016/j.jclepro.2019.02.134

Rahman, M. M., Law, D. W., & Patnaikuni, I. (2017). Effect of curing temperature on the properties of 100% clay-based geopolymer concrete. Proceedings of International Structural Engineering and Construction, 4(1), 1–11. https://doi.org/10.14455/ISEC.res.2017.98

Raju MP, R. A. (2021). Effect of temperature on residual compressive strength of fly ash concrete. Indian Concr J, 75(5), 347–350.

Ramezanianpour, A. A., Khazali, M. H., & Vosoughi, P. (2013). Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete. Construction and Building Materials, 49, 807–813. https://doi.org/10.1016/j.conbuildmat.2013.08.040

Sarker, P. K., Haque, R., & Ramgolam, K. V. (2013). Fracture behaviour of heat cured fly ash based geopolymer concrete. Materials and Design, 44, 580–586. https://doi.org/10.1016/j.matdes.2012.08.005

Shehata, N., Sayed, E. T., & Abdelkareem, M. A. (2021). Recent progress in environmentally friendly geopolymers: A review. Science of the Total Environment, 762, 143166. https://doi.org/10.1016/j.scitotenv.2020.143166

Singh, N., Vyas, S., Pathak, R. P., Sharma, P., Mahure, N. V., & Gupta, S. L. (2013). Effect of Aggressive Chemical Environment on Durability of Green Geopolymer Concrete. Int. J. Eng. Innov. Technol., 3, 277–284.

Sun, J., Wang, Z., & Chen, Z. (2018). Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures. Journal of Thermal Analysis and Calorimetry, 131(3), 2291–2301. https://doi.org/10.1007/s10973-017-6739-9

Vora, P. R., & Dave, U. V. (2013). Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210–219. https://doi.org/10.1016/j.proeng.2013.01.030

Zhang, H., Shi, X., & Wang, Q. (2018). Effect of curing condition on compressive strength of fly ash geopolymer concrete. ACI Materials Journal, 115(2), 191–196. https://doi.org/10.14359/51701124




DOI: https://doi.org/10.54607/hcmue.js.21.9.4255(2024)

Tình trạng

  • Danh sách trống