ĐÁNH GIÁ KHẢ NĂNG TĂNG SINH CỦA TẾ BÀO CCL-13 SAU CẢM ỨNG VI TRỌNG LỰC MÔ PHỎNG

Hoàng Nghĩa Quang Huy, Lê Thành Long, Hoàng Nghĩa Sơn, Hồ Nguyễn Quỳnh Chi

Tóm tắt


Nghiên cứu này nhằm đánh giá khả năng năng tăng sinh của tế bào gan Chang (CCL-13) sau cảm ứng vi trọng lực mô phỏng (Simulated microgravity-SMG) thông qua việc đánh giá số lượng tế bào, sức sống và sự biểu hiện của các gene liên quan đến chu kì tế bào. Kết quả nghiên cứu cho thấy, tế bào ở nhóm SMG có khả năng tăng sinh thấp hơn so với nhóm đối chứng, ngoài ra giá trị OD trong thử nghiệm WST-1 của nhóm SMG cũng thấp hơn so với nhóm đối chứng. Điều kiện SMG cảm ứng sự suy giảm của giá trị cường độ nhân. Sự biểu hiện ở mức phiên mã của một số gene liên quan đến chu kì tế bào như cdk4, cdk6, cyclin A và cyclin D giảm trong tế bào ở nhóm SMG so với nhóm đối chứng.

 


Từ khóa


tế bào chang; vi trọng lực; khả năng tăng sinh; chu kì tế bào

Toàn văn:

PDF

Trích dẫn


Arsic, N., Bendris, N., Peter, M., Begon-Pescia, C., Rebouissou, C., Gadéa, G., Bouquier, N., Bibeau, F., Lemmers, B., & Blanchard, J. M. (2012). A novel function for Cyclin A2: Control of cell invasion via RhoA signaling. Journal of Cell Biology, 196(1), 147–162. https://doi.org/10.1083/jcb.201102085

Bahreyni-Toossi, M.-T., Azimian, H., Aghaee-Bakhtiari, S. H., Mahmoudi, M., Sadat- Darbandi, M., & Zafari, N. (2021). Radiation-induced DNA damage and altered expression of p21, cyclin D1 and Mre11 genes in human fibroblast cell lines with different radiosensitivity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 823, 111760. https://doi.org/10.1016/j.mrfmmm.2021.111760

Bertoli, C., Skotheim, J. M., & De Bruin, R. A. M. (2013). Control of cell cycle transcription during G1 and S phases. Nature Reviews Molecular Cell Biology, 14(8), 518–528. https://doi.org/10.1038/nrm3629

Burkhart, D. L., & Sage, J. (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Reviews Cancer, 8(9), 671–682. https://doi.org/10.1038/nrc2399

Chen, B., Guo, J., Wang, S., Kang, L., Deng, Y., & Li, Y. (2018). Simulated Microgravity Altered the Metabolism of Loureirin B and the Expression of Major Cytochrome P450 in Liver of Rats. Frontiers in Pharmacology, 9, 1130. https://doi.org/10.3389/fphar.2018.01130

Chen, Y., Liu, J., Yuan, B., Cao, C., Qin, S., Cao, X., Bian, G., Wang, Z., & Jiang, J. (2013). Methylated actinomycin D, a novel actinomycin D analog induces apoptosis in HepG2 cells through Fas‐ and mitochondria‐mediated pathways. Molecular Carcinogenesis, 52(12), 983–996. https://doi.org/10.1002/mc.21943

Chibazakura, T., Kamachi, K., Ohara, M., Tane, S., Yoshikawa, H., & Roberts, J. M. (2011). Cyclin A Promotes S-Phase Entry via Interaction with the Replication Licensing Factor Mcm7. Molecular and Cellular Biology, 31(2), 248–255. https://doi.org/10.1128/MCB.00630-10

Crucian, B., Simpson, R. J., Mehta, S., Stowe, R., Chouker, A., Hwang, S.-A., Actor, J. K., Salam, A. P., Pierson, D., & Sams, C. (2014). Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain, Behavior, and Immunity, 39, 23–32. https://doi.org/10.1016/j.bbi.2014.01.011

Dick, F. A., & Rubin, S. M. (2013). Molecular mechanisms underlying RB protein function. Nature Reviews Molecular Cell Biology, 14(5), 297–306. https://doi.org/10.1038/nrm3567

Gong, W., Wang, L., Zheng, Z., Chen, W., Du, P., & Zhao, H. (2020). Cyclin-dependent kinase 6 (CDK6) is a candidate diagnostic biomarker for early non-small cell lung cancer. Translational Cancer Research, 9(1), 95–103. https://doi.org/10.21037/tcr.2019.11.21

Ho, C. N. Q., Tran, M. T., Doan, C. C., Hoang, S. N., Tran, D. H., & Le, L. T. (2021). Simulated Microgravity Inhibits the Proliferation of Chang Liver Cells by Attenuation of the Major Cell Cycle Regulators and Cytoskeletal Proteins. International Journal of Molecular Sciences, 22(9), 4550. https://doi.org/10.3390/ijms22094550

Ji, X., Humenik, J., Yang, D., & Liebhaber, S. A. (2018). PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Research, 46(4), 2030–2044. https://doi.org/10.1093/nar/gkx1255

Kang, C.-Y., Zou, L., Yuan, M., Wang, Y., Li, T.-Z., Zhang, Y., Wang, J.-F., Li, Y., Deng, X.-W., & Liu, C.-T. (2011). Impact of simulated microgravity on microvascular endothelial cell apoptosis. European Journal of Applied Physiology, 111(9), 2131–2138. https://doi.org/10.1007/s00421-011-1844-0

Loukil, A. (2015). Cyclin A2: At the crossroads of cell cycle and cell invasion. World Journal of Biological Chemistry, 6(4), 346. https://doi.org/10.4331/wjbc.v6.i4.346

Morey-Holton, E. R. (2003). The impact of gravity on life. In Evolution on planet Earth (pp. 143–159). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780125986557500367

Morgan, D. O. (1997). CYCLIN-DEPENDENT KINASES: Engines, Clocks, and Microprocessors. Annual Review of Cell and Developmental Biology, 13(1), 261–291. https://doi.org/10.1146/annurev.cellbio.13.1.261

Nguyen, H. P., Tran, P. H., Kim, K.-S., & Yang, S.-G. (2021). The effects of real and simulated microgravity on cellular mitochondrial function. Npj Microgravity, 7(1), 44. https://doi.org/10.1038/s41526-021-00171-7

Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., & Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. The EMBO Journal, 11(3), 961–971. https://doi.org/10.1002/j.1460-2075.1992.tb05135.x

Pala, R., Cruciani, S., Manca, A., Garroni, G., El Faqir, M. A., Lentini, V., Capobianco, G., Pantaleo, A., & Maioli, M. (2023). Mesenchymal Stem Cell Behavior under Microgravity: From Stress Response to a Premature Senescence. International Journal of Molecular Sciences, 24(9), 7753. https://doi.org/10.3390/ijms24097753

Poehlmann, A., Reissig, K., Schönfeld, P., Walluscheck, D., Schinlauer, A., Hartig, R., Lessel, W., Guenther, T., Silver, A., & Roessner, A. (2013). Repeated H 2 O 2 exposure drives cell cycle progression in an in vitro model of ulcerative colitis. Journal of Cellular and Molecular Medicine, 17(12), 1619–1631. https://doi.org/10.1111/jcmm.12150

Rui, L. (2014). Energy Metabolism in the Liver. In R. Terjung (Ed.), Comprehensive Physiology (1st ed., pp. 177–197). Wiley. https://doi.org/10.1002/cphy.c130024

Scott, K. D., Nath-Sain, S., Agnew, M. D., & Marignani, P. A. (2007). LKB1 Catalytically Deficient Mutants Enhance Cyclin D1 Expression. Cancer Research, 67(12), 5622–5627. https://doi.org/10.1158/0008-5472.CAN-07-0762

Sherr, C. J., & Roberts, J. M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes & Development, 18(22), 2699–2711. https://doi.org/10.1101/gad.1256504

Tan, X., Xu, A., Zhao, T., Zhao, Q., Zhang, J., Fan, C., Deng, Y., Freywald, A., Genth, H., & Xiang, J. (2018). Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Scientific Reports, 8(1), 3769. https://doi.org/10.1038/s41598-018-20459-1

Tang, N., Hui, T., Ma, J., & Mei, Q. (2019). Effects of miR‐503‐5p on apoptosis of human pulmonary microvascular endothelial cells in simulated microgravity. Journal of Cellular Biochemistry, 120(1), 727–737. https://doi.org/10.1002/jcb.27430

Touchstone, H., Bryd, R., Loisate, S., Thompson, M., Kim, S., Puranam, K., Senthilnathan, A. N., Pu, X., Beard, R., Rubin, J., Alwood, J., Oxford, J. T., & Uzer, G. (2019). Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. Npj Microgravity, 5(1), 11. https://doi.org/10.1038/s41526-019-0072-5

Tran, M. T., Doan, C. C., Hoang, S. N., Ly, C. N., Nguyen, M. T. P., To, Q. M., Truong, N. H., Ho, C. N. Q., & Le, L. T. (2023). Changes in the Cell Division of Chang Liver Cells Induced by Simulated Microgravity. Applied Sciences, 13(13), 7351. https://doi.org/10.3390/app13137351

White, O., Clément, G., Fortrat, J.-O., Pavy-LeTraon, A., Thonnard, J.-L., Blanc, S., Wuyts, F. L., & Paloski, W. H. (2016). Towards human exploration of space: The THESEUS review series on neurophysiology research priorities. Npj Microgravity, 2(1), 16023. https://doi.org/10.1038/npjmgrav.2016.23

Yan, M., Wang, Y., Yang, M., Liu, Y., Qu, B., Ye, Z., Liang, W., Sun, X., & Luo, Z. (2015). The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications, 460(2), 327–332. https://doi.org/10.1016/j.bbrc.2015.03.034

Yang, T., Li, C., Zhang, L., Li, M., & Zhou, P. (2013). A Promising Hepatocyte-Like Cell Line, CCL-13, Exhibits Good Liver Function Both In Vitro and in an Acute Liver Failure Model. Transplantation Proceedings, 45(2), 688–694. https://doi.org/10.1016/j.transproceed.2012.11.012

Zong, B., Wang, Y., Wang, J., Zhang, P., Kan, G., Li, M., Feng, J., Wang, Y., Chen, X., Jin, R., & Ge, Q. (2022). Effects of long‐term simulated microgravity on liver metabolism in rhesus macaques. The FASEB Journal, 36(10). https://doi.org/10.1096/fj.202200544RR




DOI: https://doi.org/10.54607/hcmue.js.21.8.4284(2024)

Tình trạng

  • Danh sách trống